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ABSTRACT

In earlier work, we introduced the progressive mesh (PM) represen-
tation, a new format for storing and transmitting arbitrary triangle
meshes. For a given mesh, the PM representation defines a con-
tinuous sequence of level-of-detail approximations, allows smooth
visual transitions (geomorphs) between these approximations, sup-
ports progressive transmission, and makes an effective compression
scheme. In this paper, we present data structures and algorithms
for efficient implementation of the PM representation and its ap-
plications. Also, we report quantitative results using a variety of
computer graphics models.

1 INTRODUCTION

Creating computer graphics often requires detailed geometric mod-
els for three-dimensional objects. Such models are typically created
using commercial modeling and 3D scanning systems. Although
some geometric models may be initially defined using high level
primitives, for efficient rendering they are typically converted to
their lowest common denominator form — polygonal approxima-
tions called meshes.

In the simplest case, a mesh consists of a set of vertices and a set
of faces. Each vertex specifies the (x� y� z) coordinates of a point
in space, and each face defines a polygon by connecting together
an ordered subset of the vertices. Although the polygons may in
general have arbitrary numbers of vertices (and even holes), we
consider in this paper the special case of triangle meshes, in which
all faces have exactly 3 vertices. However, arbitrary meshes can be
easily converted to triangle meshes through a simple triangulation
process.

Complex triangle meshes are notoriously difficult to render, store,
and transmit. One approach to speed up rendering is to replace a
complex mesh by a set of level-of-detail (LOD) approximations;
a detailed mesh is used when the object is close to the viewer,
and coarser approximations are substituted as the object recedes [2,
4]. These LOD approximations can be precomputed automatically
using mesh simplification methods (e.g. [5, 8, 9, 10, 11, 12]). For
efficient storage and transmission, mesh compression schemes [3,
13] have also been developed.

In earlier work [6], we introduced the progressive mesh (PM)
representation, a new mesh format that provides a unified solution
to these problems. In PM form, an arbitrary mesh �M is stored as a
coarse base mesh M0 together with a sequence of n detail records
that indicate how to incrementally refine M0 into Mn = �M (see Fig-
ure 2). Each detail record encodes the information associated with
a vertex split, an elementary transformation that adds one vertex to
the mesh. In addition to defining a continuous sequence of approx-
imations M0

� � �Mn, the PM representation supports smooth visual
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Figure 1: Illustration of the edge collapse transformation.

transitions (geomorphs) between these approximations, allows pro-
gressive transmission, and makes an effective mesh compression
scheme.

Since the original paper [6], we have developed data structures
and algorithms allowing the efficient implementation of progressive
meshes. In this paper, we detail these data structures and algo-
rithms, and present quantitative results on their performance. The
remainder of the paper is organized as follows. We first review the
PM representation in Section 2. Section 3 describes our basic data
structures for meshes and progressive meshes. Section 4 describes
the process of traversing the levels of detail within a progressive
mesh. Section 5 discusses the creation of geomorphs, Section 6
addresses the issue of compression, and Section 7 summarizes the
paper.

2 REVIEW OF PROGRESSIVE MESHES

To construct a PM representation [6], an arbitrary triangle mesh �M
is simplified through a sequence of n edge collapse transformations
(ecol in Figure 1) to yield a much simpler base mesh M0 (see
Figure 2):

( �M =Mn)
ecoln�1
�� � � �

ecol1�� M1 ecol0
�� M0

�

The sequence of ecol transformations is chosen by an optimization
process that seeks to preserve the appearance of the model [6].
Because each ecol has an inverse, called a vertex split transformation
(Figure 1), the process can be reversed:

M0 vsplit0
�� M1 vsplit1�� � � �

vsplitn�1
�� (Mn = �M) �

The tuple (M0
� fvsplit0� � � � � vsplitn�1g) forms a PM representation

of �M. Each vertex split, parametrized as vsplit(vs� vl� vr� � � �), mod-
ifies the mesh by introducing one new vertex vt and two new faces
fl = fvs� vt� vlg and fr = fvs� vr� vtg as shown in Figure 1. (We set vr

and fr to nil if fvs� vtg is a boundary edge.) The vertices and faces
are numbered in the order that they are created, so that the indices
of vt, fl, and fr do not have to be stored explicitly. Of course, the
vertex split must store the positions of the two split vertices vs and
vt, as well as other appearance attributes associated with the mesh
(as discussed in Section 3.1).



M0 (44 faces) M200 (444 faces) M1000 (2,044 faces) Mn (17,068 faces)
Figure 2: The PM representation of an arbitrary mesh �M captures a continuous-resolution family of approximating meshes M0

� � �Mn = �M.

The resulting sequence of meshes M0
� � � � �Mn = �M can be quickly

traversed at runtime by applying a subsequence of vsplit and ecol
transformations, and is therefore effective for real-time LOD con-
trol.

In addition, smooth visual transitions (geomorphs) can be con-
structed between any two meshes in this sequence. Given a coarser
mesh Mc and a finer mesh Mf , 0 � c � f � n, each vertex in Mf has
a unique ancestor vertex in Mc, obtained by tracing back through the
intervening ecol transformations. If all vertices in the mesh Mf are
moved to the positions of their ancestor vertices in Mc, the mesh that
results looks identical to Mc, because all faces in Mf missing from
Mc are collapsed to degenerate (zero area) triangles. A geomorph
is therefore obtained by smoothly interpolating the vertices of the
mesh Mf between their original positions in Mf and that of their
ancestors in Mc.

Finally, because each vsplit transformation can be encoded con-
cisely, the PM representation is in fact a space-efficient representa-
tion. This paper describes data structures for achieving good space
compression while maintaining time efficiency.

3 BASIC DATA STRUCTURES

In this section, we describe the basic data structures for both meshes
and progressive meshes, with the aid of C++ notation. It should be
noted that the C++ structures have been simplified for presentation
purposes. Although we show most of the structure data members,
we omit the numerous class member functions that should encap-
sulate these data members, as well as public/private/friend access
declarations.

3.1 Mesh representation (Mesh)

Besides the geometric positions of its vertices, a computer graph-
ics mesh often has numerous other appearance attributes used in
the rendering of its surface. These appearance attributes can be
classified into two types: discrete attributes and scalar attributes.

vertex

wedge

face

corner

Figure 3: Illustration of vertices, wedges, and faces. In this example,
the central vertex has 6 adjacent corners which are partitioned into
3 wedges.

Discrete attributes are usually associated with faces of the mesh.
A common discrete attribute, the material identifier, determines the
shader function used in rendering each face of the mesh [14]. For
instance, a trivial shader function may involve simple look-up within
a specified texture map.

Many scalar attributes are often associated with a mesh, including
normals (nx� ny� nz) and texture coordinates (u� v). More generally,
these attributes specify the local parameters of shader functions
defined on the mesh faces. In simple cases, these scalar attributes
are associated with vertices of the mesh. However, to represent
discontinuities in the scalar fields, and because adjacent faces may
have different shading functions, it is necessary to associate scalar
attributes not with vertices, but with corners of the mesh [1]. A
corner is defined as a (vertex,face) tuple. Scalar attributes at a
corner (v� f ) specify the shading parameters for face f at vertex v.
For example, along a crease (a curve on the surface across which
the normal field is not continuous), each vertex has two distinct
normals, one associated with the corners on each side of the crease.

A mesh with n vertices has approximately 2n faces, and thus ap-
proximately 6n corners. Explicit storage of attributes at all corners
of the mesh would therefore require a significant amount of mem-
ory, and seems unnecessary since in general many corners adjacent
to a vertex share the same attributes. One common approach to al-



struct VertexAttrib f // Attributes at a vertex
Point point; // (x� y� z) coordinates

g;
struct WedgeAttrib f // Attributes at a wedge/corner

Vector normal; // (nx� ny� nz) normal vector
UV uv; // (u� v) texture coordinates

g;

struct Vertex f
VertexAttrib attrib;

g;
struct Wedge f

int vertex; // vertex to which wedge belongs
WedgeAttrib attrib;

g;
struct Face f

int wedges[3]; // wedges at corners of the face
int fnei[3]; // 3 face neighbors
short matid; // material identifier

g;

struct Mesh f
Array<Vertex> vertices;
Array<Wedge> wedges;
Array<Face> faces;
Array<Material> materials;

g;

Figure 4: The mesh data structure.

struct PMesh f
Mesh base mesh; // base mesh M0

Array<Vsplit> vsplits; // fvsplit0� � � � � vsplitn�1g
int full nvertices; // number of vertices in Mn

int full nwedges; // number of wedges in Mn

int full nfaces; // number of faces in Mn

g;

Figure 5: The progressive mesh data structure.

leviate this problem is to store attributes only at vertices, and to tear
the mesh apart along discontinuity curves (where adjacent corner
attributes differ) by replicating some vertices. While this is sat-
isfactory for static meshes, it makes runtime LOD and progressive
transmission difficult, since modifications to the mesh structure may
pull replicated vertices apart and introduce cracks in the surface.

Instead, our approach is to introduce an intermediate abstraction
called a wedge. A wedge is a set of vertex-adjacent corners whose
attributes are the same. Each vertex of the mesh is partitioned into
a set of one or more wedges, and each wedge contains one or more
face corners (see Figure 3). As shown in Figure 4, we define a mesh
to contain an array of vertices, an array of wedges, and an array of
faces, where faces point to wedges, and wedges point to vertices.
Our implementations of the vsplit and ecol transformations requires
adjacencies between elements of the mesh, so for each face we store
pointers to its three neighboring faces. (A special neighbor value
of �1 indicates a surface boundary.) Finally, each face contains
a material identifier that indexes into an array of materials. These
materials are platform-dependent but often include material colors
and texture mapping parameters.

3.2 PM representation (PMesh)
The data structure for the PM representation corresponds closely

with the tuple (M0
� fvsplit0� � � � � vsplitn�1g). As seen in Figure 5,

the base mesh field stores M0 using the Mesh structure of Sec-
tion 3.1, and the vsplits field is an array of vertex split records. Also
included are three fields that store information about the original
mesh �M = Mn; these fields are used by the PM iterator (Section 4)

struct VertexAttribD f // Delta applied to vertex attributes
Vector dpoint; //�VertexAttrib.point

g;
struct WedgeAttribD f // Delta applied to wedge attributes

Vector dnormal; //�WedgeAttrib.normal
UV duv; //�WedgeAttrib.uv

g;
struct Vsplit f

int flclw; // a face in neighborhood of vsplit
short vlr rot; // encoding of vertex vr

struct f
short vs index : 2; // index (0..2) of vs within flclw
short corners : 10; // corner continuities in Figure 9
short ii : 2; // geometry prediction of Figure 10
short matid predict : 2; // are fl matid,fr matid required?

g code; // set of 4 bit-fields (16-bit total)
short fl matid; // matid of face fl if not predicted
short fr matid; // matid of face fr if not predicted
VertexAttribD vad l, vad s;
Array<WedgeAttribD> wads;

g;
Figure 6: Vertex split data structure.

flclw
vlr_rot

vs_index
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Figure 7: The Vsplit parameters flclw, vs index, and vlr rot, which
identify the location of a vertex split.
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vlr_rot = 0

(vl)
(no vr)
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vlr_rot = -1

(no vr)(vl)
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Figure 8: The parameter settings for the special cases of vertex splits
in which vertex vr or face flclw do not exist, i.e. next to a surface
boundary.

for efficient pre-allocation of arrays. The remainder of this sec-
tion discusses the encoding of the vertex split records, that is, the
internals of the Vsplit structure (Figure 6).

Because the Mesh structure has incidence information only in
the direction Face�Wedge�Vertex, we identify the location of the
vertex split within the mesh not with vertices (vs, vl, vr) but through
the index of a face flclw, as shown in Figure 7. The vertex vs being
split is specified as an index 0 � vs index � 2 into the ordered
vertices of face flclw. The vertex vl is the next clockwise vertex on
face flclw. To determine the other vertex vr, we store the number
vlr rot of clockwise face rotations about vs from vl to vr. The face
adjacency information Face::fnei is used to perform these rotations.
Two special symbols for vlr rot are used for the cases when vr or
flclw do not exist, as shown in Figure 8.

In the common case, a vertex split introduces two new faces (fl and
fr) and therefore 6 new corners (Figure 9). A field of 10 bits, corners,



Figure 9: The 6 new corners introduced by a vertex split, and the
10-bit field corners used to record the continuity of corner attributes.
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Figure 10: The Vsplit parameter ii used for geometry prediction.

encodes the wedges to which these new corners are assigned. Each
bit in corners records whether a pair of adjacent corners (after the
vertex split) belongs to the same wedge, as shown in Figure 9. From
the bit field corners, one can determine how many new wedges (from
1 to 6) to introduce during a vertex split, and how to assign corners
to new and old wedges.

For concise vertex and wedge attribute encodings, we predict the
positions of the split vertices vs and vt relative to the old vertex vs

using a 2-bit field ii as shown in Figure 10. Specifically, we store two
vertex position deltas, vad l (large delta) and vad s (small delta),
and let the vertex split transformation modify vertex positions as
follows:

If ii = 0, vt := vs + vad s; vs := vs + vad l
If ii = 2, vt := vs + vad l; vs := vs + vad s
If ii = 1, vt := vs + vad s + vad l; vs := vs + vad s� vad l

Similarly, the array wads encodes the deltas to the wedge at-
tributes in the neighborhood. Depending on the number of wedges
present in the neighborhood, the size of this array ranges from 1 to
6. For typical models, the average array size is only about 1.0–1.5
(jwadj in Table 3).

The material identifier (Face.matid) of each new face (fl and fr) is
predicted from an adjacent face prior to the vertex split. (The specific
adjacent face is chosen based on ii.) A 2-bit field matid predict
records whether these predicted materials are correct. If incorrect,
the materials are stored explicitly in the fl matid and fr matid fields
of Vsplit.

The code field of Vsplit is a 16-bit mask that combines the bit-fields
vs index (2 bits), corners (10 bits), ii (2 bits), and matid predict
(2 bits).

4 PM TRAVERSAL

4.1 PM Read Stream (PMeshRStream)
The PMeshRStream class (Figure 11) provides an interface to ab-
stract the source of PM data. This abstraction allows PM’s to be
used in three different scenarios:

(1) Reading from a PM stored in memory (a PMesh).
(2) Reading from a PM received progressively over an input

stream.
(3) Reading from an input stream while archiving to a PMesh.

struct PMeshRStream f // read from either PMesh or istream.
PMesh* pm; // may be 0
istream* istr; // may be 0
int vspliti; // if pm �= 0, index into pm–>vsplits
Vsplit vspl; // if pm = 0, temporary buffer

g;
Figure 11: Progressive mesh read stream.

struct PMeshIter : public Mesh f
PMeshRStream& pmrs;
PMeshIter(PMeshRStream&);
PMeshIter(PMeshIter&);
int next(); // apply one vertex split
int prev(); // apply one edge collapse
enum Type f WANT NVERTICES, WANT NFACES g;
int goto(Type, int); // go to specified # of vertices/faces
int nextA(Ancestry*); // for use in Section 5

g;
Figure 12: Progressive mesh iterator.

4.2 PM iterator (PMeshIter)
The class PMeshIter is used as an iterator within a PM sequence.
As shown in Figure 12, it is derived from a Mesh, and contains a
pointer into a PM source (PMeshRStream).

A PMeshIter is initialized from a PMeshRStream by simply copy-
ing the PM base mesh (PMesh::base mesh) onto itself. In the case
that the PMeshRStream is associated with an input stream, the base
mesh is read directly from the input stream. A PMeshIter can also be
initialized by cloning another iterator. Once initialized, PMeshIter
is used to traverse the PM sequence, and since it is a Mesh, it can
be rendered as needed.

4.3 Vertex split transformation
(PMeshIter::next())

The member function PMeshIter::next() applies the next vertex split
transformation to the current mesh. If this Vsplit record is not
found in memory (in pmrs�pm), it is read on demand from the
input stream. The vertex split transformation works as follows. It
appends 1 vertex, 1–6 wedges, and 1–2 faces to the arrays in Mesh.
It traverses the old corners around the newly added vertex vt (using
the face adjacencies in Face::fnei) and possibly updates the corners
to point to the new wedge(s) associated with vt. It updates the local
face adjacencies to reflect the introduction of the new faces. Finally,
it updates the vertex and wedge attributes using the deltas stored in
Vsplit.

4.4 Edge collapse transformation
(PMeshIter::prev())

The member function PMeshIter::prev() moves through the PM se-
quence backwards by performing the edge collapse transformation
that is the inverse of the previous vertex split. Since it requires
accessing the Vsplit sequence backwards, the prev() function is
only supported if the PM source (PMeshRStream) has an associated
memory-resident PMesh, i.e. in Scenarios (1) and (3) of Section 4.1.

The Vsplit structure contains enough information to perform both
the vertex split and its inverse edge collapse. One key element
that makes this possible is that all changes to mesh attributes are
recorded as deltas, so that they can be applied both forwards and
backwards.

The edge collapse works in the reverse order of the vertex split



struct Geomorph : public Mesh f
Array<VertexAttrib> vattribs[2];
Array<WedgeAttrib> wattribs[2];
enum Type f WANT NVERTICES, WANT NFACES g;
Geomorph(PMeshIter&, Type, int);
void evaluate(float); // takes parameter 0 � � � 1

g;
Figure 13: The data structure for a geomorph.

struct Ancestry f
Array<VertexAttrib> anc vattribs;
Array<WedgeAttrib> anc wattribs;

g;
Figure 14: The data structure used to track ancestral attributes of
PMeshIter::vertices and PMeshIter::wedges during geomorph con-
struction.

transformation. It updates vertex and wedge attributes, updates face
adjacencies, updates corners around the old vertex vt, and finally
removes 1 vertex, 1–6 wedges, and 1–2 faces from the ends of the
arrays in Mesh.

4.5 Iteration to specified complexity
(PMeshIter::goto())

The function PMeshIter::goto() supports iteration to a desired level
of complexity, expressed as either number of vertices or number of
faces, by simply invoking next() or prev() repeatedly.

We used a number of meshes (Table 1) to measure the speed of PM
iteration. Table 2 shows the iteration rates, in vertices per second,
for both reconstruction (going from M0 to Mn) and simplification
(going from Mn to M0), on a 200 MHz Pentium Pro processor. We
suspect that the lower iteration rates for the larger models are due
to the memory architecture of the machine.

5 GEOMORPHS

As discussed previously in Section 2, a geomorph allows the smooth
visual transition between any two meshes Mc and Mf , 0 � c � f �
n, in a PM sequence. The geomorph is essentially a copy of the mesh
Mf , but whose attributes at vertices and wedges interpolate between
their values in Mf and those of their vertex and wedge ancestors in
Mc. As shown in Figure 13, a Geomorph structure is derived from
a Mesh, and in addition contains a pair of end states (vattribs[0��1]
and wattribs[0��1]) for its vertex and wedge attributes.

A Geomorph between Mc and Mf is constructed by providing
both a PMeshIter pointing to Mc and the complexity (number of
vertices or number of faces) of Mf . During the geomorph construc-
tion, the PMeshIter is advanced through the PM sequence using the
special member function PMeshIter::nextA(). This function nextA()
behaves just like PMeshIter::next(), except that it tracks the ances-
tral attributes of vertices and wedges using the Ancestry structure
shown in Figure 14. Once the PMeshIter has been advanced to
Mf , the current vertex and wedge attributes of PMeshIter::Mesh are
copied to vattribs[1] and wattribs[1], and the ancestral attributes in
Ancestry are copied to vattribs[0] and wattribs[0]. In our current
implementation, the creation of a geomorph requires approximately
twice as much time as simple iteration through the PM sequence.

The Geomorph::evaluate() function uses the floating-point pa-
rameter 0 � � � 1 to interpolate its vertex and wedge attributes
between the pair of end states. Points and texture coordinates are
linearly interpolated, but normals are interpolated over the unit
sphere. If the fraction of vertices and wedges that require inter-
polation is small, a sparse data structure can replace vattribs[0��1]
and wattribs[0��1] to reduce memory use and speed up geomorph
evaluation.

6 COMPRESSION

In this section, we compare the memory space required for the Mesh
and PMesh structures, and also compare how well these structures
can be compressed for storage and transmission.

6.1 Memory-resident representation
The two columns labeled “memory” in Table 2 show the average
number of bits per vertex for the Mesh and PMesh data structures
(Figures 4 and 5) using our test meshes. To make the comparison
fair, we omitted the Face::fnei[3] field when computing the memory
required for Mesh, since face adjacency information is unnecessary
for rendering static models. All coordinates (for points, normals,
and texture) are represented as 32-bit floating-point numbers; inte-
gers are 32-bit, and shorts are 16-bit.

We observe that the PMesh structure is in fact slightly more
compact than the standard Mesh structure, even though it encodes
not just Mn but the entire PM sequence M0

� � �Mn. Of course, the
PMesh structure cannot be rendered directly, since a PMeshIter must
first traverse it to construct a Mesh. However, in a complex scene,
only a fraction of the scene objects require a high level-of-detail,
and thus the memory overhead of maintaining these dynamic Mesh
structures may be small.

6.2 Compressed representation
For storage and transmission of meshes, it may be worthwhile to
compress the data structures. While compression may typically
be performed off-line, the time overhead for decompression must
be considered against storage scarcity and transmission bandwidth.
We analyze two types of compression schemes, for both Mesh and
PMesh. In both compression schemes, we quantize position coordi-
nates to 16-bit, normal coordinates to 8-bit, and texture coordinates
to 16-bit. The compression is therefore lossy, but these quantiza-
tion levels seldom result in significant visual artifacts. The first
compression scheme, labeled “gzip” in Table 2, applies Lempel-
Ziv coding [17] to the binary data structures, as implemented by
GNU “gzip”. The second scheme, labeled “arith.”, performs arith-
metic coding [15], where the coding probability distributions are
optimized on a per-mesh basis.

As shown in Table 2, PMesh compresses significantly better than
Mesh. There are two main reasons for this.

First, the Face�Wedge�Vertex incidences are more concisely
represented in PMesh than in Mesh. For arithmetic coding in partic-
ular, the Face::wedges and Wedge::vertex fields in Mesh require a
total of more than n(7 log2 n) bits, where n is the number of vertices,
whereas the corresponding Vsplit fields flclw, vs index, vlr rot, and
corners use approximately n(log2 n + 5) bits (see Table 3).

Second, PMesh uses deltas to encode mesh attributes (positions,
normals, and texture coordinates). These relative deltas compress
better since they tend to be smaller in magnitude than the absolute
values. When using arithmetic coding, we use variable-length delta
encoding as described in [3, 6].

Table 3 shows how many bits are required on average to encode
each field of the Vsplit records using arithmetic coding and variable-
length delta encoding. As noted in the table, only one of our test
meshes had non-zero texture coordinates.

A number of changes can be made to further improve the com-
pression results of Table 3, to obtain the results of Table 4.

� The field vad s is set to zero by restricting each edge collapse
to place the new vertex at the position of one of the old vertices
fvs�vtg or at their midpoint. We can in fact perform this as
a post-process on an existing PMesh, by first constructing the
original mesh Mn and then traversing the Vsplit array backwards,
and finally updating the vertex positions of the base mesh.



Model Original mesh Mn Base mesh M0 n
#vertices #wedges #faces #vertices #wedges #faces

garethman 801 1,207 1,586 31 84 46 770
cessna 6,795 9,533 13,546 46 75 48 6,749
bigship 8,536 8,847 17,068 24 59 44 8,512
dunebuggy 11,322 11,674 22,444 513 568 826 10,809
gameguy 21,412 25,095 42,712 31 50 27 21,381
drumset 34,794 59,834 68,776 963 2,192 1,114 33,831
chandelier 36,627 55,289 72,346 2,140 4,930 3,372 34,487
bunny 34,835 34,835 69,473 13 13 18 34,822
dragon 429,753 429,753 859,586 259 259 598 429,494
buddha 517,924 517,924 1,036,260 942 942 2,296 516,982
gcanyon 360,000 360,000 717,602 3 3 1 359,997

Table 1: Statistics for the various data sets.

Model Iteration rates (verts/sec) Space for Mn (bits/vertex)
goto(Mn) goto(M0) Mesh PMesh

memory gzip arith. memory gzip arith.

garethman n/a n/a 607 257 214 541 221 111
cessna 105,000 149,000 589 232 227 517 152 86
bigship 112,000 158,000 519 241 199 455 189 105
dunebuggy 97,000 135,000 516 230 208 461 168 88
gameguy 92,000 126,000 544 240 223 477 158 80
drumset 79,000 108,000 648 272 276 572 179 100
chandelier 81,000 112,000 607 249 257 542 170 98
bunny 80,000 107,000 511 247 209 448 148 74
dragon 76,000 101,000 512 248 235 448 132 64
buddha 75,000 100,000 512 248 237 449 132 65
gcanyon 71,000 94,000 511 223 233 448 97 58

Table 2: PM iteration rates and space requirements.



Model Avg. flclw vs index vlr rot corners+ii+ fl matid+ VertexAttribD WedgeAttribD �

jwadj matid pred fr matid vad l vad s �normal �uv

garethman 1.49 8.4 1.6 1.6 4.6 0.1 36.2 21.7 31.4 0.0 105.5
cessna 1.42 11.3 1.6 1.9 4.1 0.1 29.1 12.5 24.3 0.0 85.0
bigship 1.02 11.6 1.6 2.0 1.2 0.0 30.2 18.0 18.3 22.2 105.1
dunebuggy 1.03 12.2 1.6 2.0 0.6 0.0 27.5 20.0 20.6 0.0 84.5
gameguy 1.18 13.0 1.6 1.7 2.5 0.0 26.3 13.7 21.2 0.0 80.1
drumset 1.74 13.8 1.6 2.2 4.6 0.7 25.3 15.6 32.0 0.0 95.8
chandelier 1.46 14.0 1.6 2.1 1.9 0.0 23.9 15.1 28.6 0.0 87.3
bunny 1.00 13.6 1.6 1.4 0.1 0.0 28.2 15.3 13.7 0.0 74.0
dragon 1.00 17.3 1.6 2.0 0.0 0.0 21.6 8.9 12.9 0.0 64.2
buddha 1.00 17.6 1.6 2.0 0.0 0.0 21.1 8.4 13.7 0.0 64.4
gcanyon 1.00 17.0 1.6 1.7 0.1 0.0 21.5 6.4 9.7 0.0 58.1

Table 3: Space of Vsplit fields (bits/vsplit), with arithmetic coding and variable-length delta encoding.

Model Avg. �flclw vs index vlr rot corners+ii+ fl matid+ VertexAttribD WedgeAttribD �

jwadj matid pred fr matid vad l vad s �normal �uv

garethman 1.49 6.1 1.6 1.6 4.6 0.1 36.2 0.0 0.0 0.0 50.1
cessna 1.42 6.8 1.6 1.9 4.1 0.1 29.2 0.0 0.0 0.0 43.7
bigship 1.02 6.5 1.6 2.0 1.2 0.0 30.2 0.0 0.0 22.2 63.6
dunebuggy 1.03 6.8 1.6 2.0 0.6 0.0 27.3 0.0 0.0 0.0 38.3
gameguy 1.18 6.8 1.6 1.7 2.5 0.0 26.3 0.0 0.0 0.0 39.0
drumset 1.74 6.8 1.6 2.2 4.6 0.7 25.2 0.0 0.0 0.0 41.1
chandelier 1.46 6.9 1.6 2.1 1.9 0.0 23.9 0.0 0.0 0.0 36.5
bunny 1.00 6.3 1.6 1.4 0.1 0.0 28.2 0.0 0.0 0.0 37.7
dragon 1.00 6.7 1.6 2.0 0.0 0.0 21.5 0.0 0.0 0.0 31.8
buddha 1.00 6.8 1.6 2.0 0.0 0.0 21.1 0.0 0.0 0.0 31.5
gcanyon 1.00 6.6 1.6 1.7 0.1 0.0 21.4 0.0 0.0 0.0 31.5

Table 4: Space of Vsplit fields (bits/vsplit) using three additional enhancements (reordering of vsplit records and encoding of �flclw, setting
vad s = 0, and computing normals based on wedges).

� Since normals are constrained to lie on the unit sphere, the
�normal field could be encoded more succinctly using 2 degrees
of freedom instead of 3 as it is now.
Better yet, since discontinuities in the normal field are more im-
portant than the precise normal directions, the �normal field is
omitted entirely, and normals are computed based on the ver-
tex positions and the wedge information (which indicates the
presence of creases).

� Finally, instead of storing the index of the face flclw, we store
�flclw with respect to that in the previous Vsplit record, and
permute the sequence of Vsplit records to make these deltas
small.
The vertex split transformations can be reordered as long as
they preserve some dependency conditions [7, 16]. We encode
these conditions by constructing a dependency graph. We then
iteratively select vertex split transformations among the set of
legal candidates, and use the dependency graph to update the
candidate set. To obtain small values of �flclw, we store the
candidate set as a balanced binary tree, sorted by flclw, and
always select as the next vertex split the one with the next highest
value of flclw (in circular sorted order). Our empirical evidence
suggests that the size of the candidate set is roughly proportional
to the size of the model reconstructed so far, so that the size of
the variable-length encoded�flclw field is independent of model
size; it is approximately 7 bits. The connectivity of the mesh is
thus encoded in approximately 10�4n bits (the sum of the�flclw,

vs index, and vlr rot fields in Table 4), and is now O(n) instead
of O(n log n).

Note that the reordering of the Vsplit records modifies the pro-
gressive mesh sequence, so that the appearance of intermediate
approximations (Mi

� i � n) may deteriorate. However, this may
be acceptable if storage of the detailed mesh Mn is the primary
goal.

Table 4 shows the compression results when these three compres-
sion enhancements are performed. Figure 15 shows visual compar-
isons of the original meshes and the compressed meshes.

For the gzip-encoded PMesh stream, we measure a decompres-
sion rate of 86,000 vsplit/sec on a 200 MHz Pentium Pro processor.
Since gzip-encoding saves about 300 bits per vsplit, gzip decom-
pression is worthwhile if the transmission bandwidth is less than
about 26 Mbit/sec. We unfortunately do not yet have a similar anal-
ysis for arithmetic decompression, but are confident that it would
be beneficial over modem connections, which are � 56 Kbit/sec.

7 SUMMARY AND FUTURE WORK

We have described an efficient implementation of the progressive
mesh technology introduced in earlier work. This implementation
is the basis for the progressive mesh feature available in Microsoft’s
DirectX 5.0 product release. Efficient data structures and algorithms
permit fast iteration through the PM family of approximations, at



speeds of approximately 100,000 vertices per second (or equiva-
lently, 200,000 faces per second). Since reconstruction rates exceed
the bandwidth of many networks, the progressive transmission of
meshes benefits from data compression. We have shown that arith-
metic coding, together with variable-length delta encoding, offers
an effective compression scheme, and demonstrated further oppor-
tunities for compression.
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13,546 faces; 500 KB 13,546 faces; 37 KB 2,000 faces; 7 KB

17,068 faces; 554 KB 17,068 faces; 68 KB 2,000 faces; 11 KB
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Figure 15: Results of compression. The left column shows the original meshes (Mesh uncompressed); the middle column shows the same
meshes compressed as in Table 4 (PMesh compressed); the right column shows meshes obtained by truncating the original PM sequence
and recompressing this approximation (also PMesh compressed).
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