Unabridged version of Table 1.

Table 1: Quantitative analysis of reconstruction quality. Kernel properties are degree N, width W, and approximation order L. The main columns report the mean structural similarity (MSSIM) between five reference images (circles of Figure 3, four Kodak benchmarks) and their reconstructions for three types of experiments (repeated translations or rotations, and single upsampling). The kernels are sorted in descending order of average quality across all experiments. The interpolating B-splines bspline*i consistently outperform the more traditional filters for the same N and W. The O-MOMS kernels omoms* offer even slightly higher quality but at the expense of differentiability. The quasi-interpolant condat2, which has degree 2 and support 3, also performs remarkably well.

				Comparison against ground truth (MSSIM)											
	Properties			Repeated translations						Repo	Upscaling	Average			
Kernel	N	W	L	CIR	K05	K08	K19	K23	CIR	K05	K08	K19	K23	CIR	AVG
omoms5	5	6	6	0.993	0.975	0.945	0.957	0.984	0.999	0.986	0.977	0.980	0.990	0.886	0.970
somoms5	5	6	6	0.991	0.968	0.933	0.948	0.981	0.998	0.984	0.973	0.977	0.989	0.886	0.966
bspline5i	5	6	6	0.990	0.966	0.931	0.947	0.981	0.998	0.983	0.972	0.976	0.989	0.886	0.965
omoms4	4	5	5	0.989	0.963	0.925	0.942	0.980	0.997	0.981	0.969	0.974	0.988	0.886	0.963
somoms4	4	5	5	0.988	0.961	0.922	0.941	0.979	0.997	0.981	0.969	0.974	0.988	0.886	0.962
omoms3	3	4	4	0.981	0.949	0.905	0.929	0.975	0.997	0.980	0.968	0.973	0.987	0.886	0.957
bspline4i	4	5	5	0.982	0.950	0.906	0.929	0.976	0.995	0.977	0.963	0.969	0.986	0.886	0.956
quasiblu35	3	4	4	0.965	0.926	0.874	0.907	0.969	0.994	0.975	0.961	0.968	0.986	0.885	0.946
condat3	3	4	4	0.962	0.921	0.867	0.903	0.967	0.991	0.971	0.956	0.964	0.984	0.885	0.943
schaum6	6	7	7	0.958	0.915	0.859	0.898	0.966	0.985	0.964	0.946	0.957	0.982	0.885	0.938
hamming6	-	6	1	0.960	0.918	0.862	0.901	0.966	0.977	0.956	0.937	0.951	0.979	0.885	0.936
schaum7	7	8	8	0.958	0.915	0.859	0.898	0.966	0.976	0.956	0.936	0.950	0.979	0.885	0.934
bspline3i	3	4	4	0.948	0.904	0.846	0.888	0.963	0.977	0.958	0.938	0.952	0.980	0.885	0.931
condat2	2	3	3	0.930	0.884	0.822	0.872	0.957	0.989	0.967	0.951	0.961	0.983	0.884	0.927
schaum4	4	5	5	0.921	0.875	0.809	0.864	0.955	0.967	0.949	0.927	0.944	0.977	0.884	0.916
schaum5	5	6	6	0.921	0.875	0.809	0.864	0.955	0.950	0.936	0.912	0.934	0.973	0.885	0.910
lanczos6	-	6	1	0.964	0.788	0.787	0.827	0.909	0.987	0.959	0.946	0.958	0.978	0.884	0.908
keys6	3	6	4	0.909	0.863	0.795	0.854	0.952	0.951	0.937	0.912	0.934	0.974	0.885	0.906
bspline2i	2	3	3	0.901	0.854	0.787	0.848	0.949	0.955	0.939	0.916	0.936	0.975	0.884	0.904
hann6	-	6	1	0.925	0.778	0.779	0.825	0.910	0.967	0.946	0.932	0.947	0.974	0.883	0.897
omoms2	2	3	3	0.814	0.774	0.713	0.793	0.929	0.961	0.944	0.921	0.940	0.976	0.885	0.877
meijering7	7	8	3	0.850	0.806	0.735	0.811	0.937	0.917	0.915	0.886	0.916	0.967	0.883	0.875
blackman6	-	6	1	0.842	0.800	0.728	0.806	0.935	0.914	0.913	0.883	0.914	0.967	0.883	0.871
meijering5	5	6	3	0.832	0.792	0.719	0.799	0.933	0.905	0.907	0.877	0.910	0.965	0.883	0.866
schaum2	2	3	3	0.822	0.782	0.710	0.792	0.930	0.921	0.914	0.885	0.916	0.967	0.877	0.865
welch4	-	4	1	0.896	0.683	0.708	0.761	0.865	0.945	0.922	0.909	0.931	0.964	0.878	0.860
lanczos4	-	4	1	0.822	0.782	0.710	0.792	0.930	0.896	0.902	0.871	0.906	0.963	0.882	0.860
keys	3	4	3	0.822	0.782	0.710	0.792	0.930	0.894	0.900	0.869	0.905	0.963	0.882	0.859
schaum3	3	4	4	0.822	0.782	0.710	0.792	0.930	0.876	0.891	0.858	0.897	0.960	0.883	0.855
dalai1	1	2	2	0.657	0.652	0.601	0.715	0.896	0.956	0.938	0.915	0.936	0.974	0.865	0.828
linrev	1	2	2	0.686	0.667	0.587	0.710	0.898	0.960	0.926	0.903	0.924	0.960	0.864	0.826
condat1	1	2	2	0.651	0.648	0.597	0.713	0.895	0.947	0.933	0.909	0.931	0.972	0.866	0.824
welch6	-	6	1	0.948	0.498	0.532	0.547	0.668	0.985	0.941	0.930	0.949	0.970	0.884	0.805
hamming4	-	4	1	0.663	0.657	0.603	0.716	0.897	0.822	0.859	0.826	0.875	0.951	0.879	0.795
blackmanharris6	-	6	1	0.657	0.652	0.599	0.714	0.896	0.808	0.852	0.819	0.870	0.949	0.879	0.790
hann4	-	4	1	0.550	0.579	0.536	0.674	0.876	0.730	0.812	0.780	0.843	0.936	0.875	0.744
mitchell	3	4	2	0.581	0.599	0.554	0.685	0.881	0.625	0.761	0.733	0.810	0.921	0.881	0.730
blackman4	-	4	1	0.458	0.520	0.485	0.643	0.859	0.666	0.780	0.751	0.822	0.927	0.860	0.706
idodgson	2	3	2	0.391	0.480	0.449	0.623	0.847	0.693	0.793	0.763	0.831	0.931	0.866	0.697
blackmanharris4	-	4	1	0.413	0.493	0.461	0.629	0.851	0.634	0.765	0.737	0.813	0.921	0.840	0.687
linear	1	2	2	0.391	0.480	0.449	0.623	0.847	0.540	0.721	0.698	0.787	0.908	0.864	0.664
adodgson	2	3	?	0.391	0.480	0.449	0.623	0.847	0.448	0.678	0.659	0.764	0.894	0.872	0.646
bartlett6	-	6	1	0.279	0.428	0.447	0.622	0.831	0.475	0.698	0.684	0.782	0.899	0.874	0.638
gaussian2p5	-	2.5	1	0.385	0.476	0.445	0.621	0.846	0.526	0.715	0.692	0.430	0.906	0.856	0.627
condat0	0	1	1	0.042	0.146	0.130	0.433	0.607	0.535	0.712	0.689	0.781	0.900	0.593	0.506
nearest	0	1	1	0.042	0.102	0.087	0.367	0.560	0.547	0.654	0.633	0.731	0.851	0.586	0.469
bartlett4	-	4	1	0.735	0.069	0.061	0.042	0.022	0.828	0.470	0.497	0.457	0.437	0.852	0.406

PSNR results for the same experiments as in Table 1 (unabridged).

Quantitative analysis of reconstruction quality using PSNR. This table presents similar results to Table 1, but using the PSNR metric (based on mean squared error) rather than the perceptual MSSIM metric.

				Comparison against ground truth (PSNR)											
	Properties			Repeated translations						Rep	Upscaling	Average			
Kernel	N	W	L	CIR	K05	K08	K19	K23	CIR	K05	K08	K19	K23	CIR	AVG
omoms5	5	6	6	34.21	34.02	29.87	34.65	40.53	41.08	35.86	33.31	38.34	40.45	21.31	34.88
somoms5	5	6	6	32.15	33.00	29.04	33.73	39.86	37.71	35.06	32.58	37.50	39.76	21.31	33.79
bspline5i	5	6	6	31.81	32.82	28.90	33.58	39.74	37.16	34.91	32.45	37.34	39.64	21.31	33.60
omoms4	4	5	5	30.98	32.40	28.55	33.21	39.44	35.61	34.48	32.06	36.89	39.27	21.31	33.11
somoms4	4	5	5	30.59	32.21	28.41	33.06	39.31	35.31	34.39	31.97	36.80	39.19	21.31	32.96
omoms3	3	4	4	28.55	31.13	27.53	32.16	38.51	35.43	34.25	31.84	36.63	39.10	21.31	32.40
bspline4i	4	5	5	28.60	31.19	27.58	32.22	38.55	32.82	33.59	31.23	35.97	38.51	21.31	31.96
quasiblu35	3	4	4	25.62	29.61	26.32	30.97	37.27	32.45	33.37	31.02	35.74	38.32	21.31	31.09
condat3	3	4	4	25.16	29.34	26.09	30.75	37.04	30.52	32.74	30.45	35.10	37.79	21.31	30.57
schaum6	6	7	7	24.83	29.07	25.80	30.49	36.79	28.47	31.85	29.61	34.19	37.02	21.30	29.95
hamming6	-	6	1	25.14	29.23	25.88	30.58	36.91	26.88	31.18	28.98	33.52	36.41	21.30	29.64
condat2	2	3	3	22.51	27.82	24.83	29.47	35.63	29.79	32.24	29.95	34.57	37.36	21.29	29.59
schaum7	7	8	8	24.83	29.07	25.80	30.49	36.79	26.77	31.09	28.89	33.43	36.38	21.30	29.53
bspline3i	3	4	4	23.77	28.56	25.46	30.11	36.33	26.80	31.25	29.03	33.59	36.49	21.31	29.34
schaum4	4	5	5	22.07	27.50	24.51	29.18	35.33	25.39	30.49	28.29	32.83	35.85	21.28	28.43
schaum5	5	6	6	22.07	27.50	24.51	29.18	35.33	23.73	29.66	27.49	32.02	35.15	21.29	27.99
keys6	3	6	4	21.44	27.14	24.21	28.85	34.96	23.75	29.69	27.51	32.04	35.17	21.29	27.82
bspline2i	2	3	3	21.00	26.91	24.07	28.66	34.72	24.00	29.85	27.67	32.19	35.29	21.29	27.79
lanczos6	-	6	1	22.20	22.64	22.20	26.02	31.05	26.72	31.19	29.03	33.33	37.07	21.29	27.52
omoms2	2	3	3	18.21	25.25	22.80	27.22	32.82	24.58	30.16	27.98	32.51	35.56	21.30	27.13
meijering7	7	8	3	19.22	25.81	23.12	27.59	33.54	21.54	28.55	26.39	30.86	34.14	21.27	26.55
blackman6	-	6	1	19.01	25.69	23.02	27.47	33.39	21.37	28.46	26.30	30.77	34.05	21.27	26.44
schaum2	2	3	3	18.50	25.36	22.73	27.13	33.02	21.65	28.49	26.33	30.77	34.05	21.18	26.29
hann6	-	6	1	19.74	22.35	21.92	25.78	30.10	23.54	29.64	27.68	31.68	35.40	21.27	26.28
meijering5	5	6	3	18.77	25.53	22.88	27.30	33.21	20.97	28.23	26.07	30.53	33.84	21.26	26.24
lanczos4	-	4	1	18.50	25.36	22.73	27.13	33.02	20.59	28.02	25.88	30.32	33.64	21.26	26.04
dalai1	1	2	2	15.70	23.53	21.31	25.60	30.81	23.98	29.62	27.49	31.90	35.12	21.17	26.02
keys	3	4	3	18.50	25.36	22.73	27.13	33.02	20.52	27.96	25.81	30.25	33.59	21.25	26.01
schaum3	3	4	4	18.50	25.36	22.73	27.13	33.02	19.89	27.61	25.47	29.88	33.26	21.26	25.83
condat1	1	2	2	15.64	23.48	21.27	25.55	30.75	23.19	29.35	27.22	31.63	34.86	21.17	25.83
linrev	1	2	2	15.79	23.59	21.00	25.18	30.86	22.02	28.29	26.25	30.32	33.91	21.02	25.29
welch6	-	6	1	20.95	16.31	16.68	19.98	24.86	26.27	29.65	27.59	32.08	35.65	21.31	24.67
hamming4	-	4	1	15.79	23.59	21.34	25.61	30.88	18.28	26.71	24.62	28.88	32.28	21.22	24.47
welch4	-	4	1	18.36	19.92	20.01	23.78	27.69	21.27	27.73	25.92	29.78	33.50	21.23	24.47
blackmanharris6	-	6	1	15.71	23.54	21.30	25.57	30.82	17.95	26.50	24.43	28.67	32.06	21.22	24.34
hann4	-	4	1	14.61	22.71	20.58	24.86	29.85	16.56	25.59	23.57	27.71	31.09	21.18	23.48
mitchell	3	4	2	14.90	22.93	20.78	25.05	30.11	15.23	24.62	22.68	26.74	30.04	21.14	23.11
blackman4	-	4	1	13.86	22.09	20.03	24.36	29.16	15.69	24.96	22.99	27.08	30.40	21.05	22.88
idodgson	2	3	2	13.39	21.67	19.65	24.02	28.70	16.03	25.22	23.23	27.34	30.69	21.12	22.82
blackmanharris4	-	4	1	13.54	21.81	19.78	24.13	28.84	15.32	24.67	22.73	26.80	30.08	20.91	22.60
linear	1	2	2	13.39	21.67	19.65	24.02	28.70	14.40	23.94	22.06	26.12	29.31	20.97	22.20
adodgson	2	3	?	13.39	21.67	19.65	24.02	28.70	13.65	23.24	21.43	25.50	28.56	20.72	21.87
gaussian2p5	-	2.5	1	13.35	21.64	19.62	23.98	28.65	14.28	23.84	21.97	22.77	29.20	20.88	21.84
bartlett6	-	6	1	12.69	20.91	19.26	23.71	27.82	13.86	23.40	21.63	25.71	28.66	21.26	21.72
condat0	0	1	1	10.01	14.51	12.57	17.94	17.21	14.22	23.66	21.82	25.87	28.90	19.28	18.73
nearest	0	1	1	8.37	13.68	11.75	16.98	16.84	11.78	20.80	19.01	23.10	25.88	19.17	17.03
bartlett4	-	4	1	12.99	6.47	6.59	6.82	6.49	14.39	10.24	10.42	11.71	13.90	20.91	10.99

Results of transient and frequency response for the extended list of filter kernels

We partition the kernels into 3 sections:

Interpolating schemes All these kernels are piecewise polynomial. Each kernel φ satisfies $\varphi(0) = 1$ and $\varphi(k) = 0$ for all $k \in \mathbb{Z} \setminus \{0\}$.

Approximating schemes These kernels are also piecewise polynomial, but not interpolating. We also included the Gaussian kernel in this set.

Windowed sinc These are all sinc functions modulated by a variety of different windows.

The red curves, if present, indicate the simpler equivalent basis functions φ when the kernel $\overline{\varphi}$ can be factored with a discrete filter as $\overline{\varphi} = \mathbf{q} * \varphi$.

Interpolating schemes

nearest: Nearest neighbor (also B-spline $\beta^0 = (\beta^0)_{int}$)

linear: Linear interpolation (also B-spline $\beta^1 = (\beta^1)_{int}$)

linrev: Linear interpolation revitalized [Blu et al. 2004]

idodgson: Interpolating quadratic of Dodgson [1997]

keys: Keys [1981] (also Catmull-Rom [Catmull and Rom 1974])

somoms4: SO-MOMS-4 of [Blu et al. 2001]

bspline4i: B-spline interpolation $(\beta^4)_{int}$

meijering5: 5th degree interpolation [Meijering et al. 1999]

meijering7: 7th degree interpolation [Meijering et al. 1999]

schaum2: 2th degree local-Lagrangian interpolation Schaum [1993] (also I-MOMS-2 [Blu et al. 2001])

schaum3: 3th degree local-Lagrangian interpolation Schaum [1993] (also4I-MOMS-3 [Blu et al. 2001])

schaum4: 4th degree local-Lagrangian interpolation Schaum [1993] (also6I-MOMS-4 [Blu et al. 2001])

schaum5: 5th degree local-Lagrangian interpolation Schaum [1993] (also I-MOMS-5 [Blu et al. 2001])

schaum6: 6th degree local-Lagrangian interpolation Schaum [1993] (also I-MOMS-6 [Blu et al. 2001])

schaum7: 7th degree local-Lagrangian interpolation Schaum [1993] (also I-MOMS-7 [Blu et al. 2001])

Approximating schemes

condat0: Quasi-interpolator of Condat et al. [2005] using β^0

condat
2: Quasi-interpolator of Condat et al. [2005] using
 β^2

condat
3: Quasi-interpolator of Condat et al. [2005] using
 β^3

adodgson: Approximating quadratic of Dodgson [1997]

mitchell: [Mitchell and Netravali 1988] with $B = C = \frac{1}{3}$

dalai1: Quasi-interpolator of Dalai et al. [2005]

quasiblu
35: Quasi-interpolator of Blu and Unser [1999] using
 β^3

Windowed sinc approximations \mathbf{W}

lanczos4: Lanczos window with W = 4

welch6: Welch window with W = 6

-2π -π 0 π 2π

WM

Imm

 $-\frac{\pi}{2}$

0

 $-\pi$

 $\frac{\pi}{2}$

π

 $-\frac{\pi}{2}$

-2 -0.2

2

-2 V -0.2

2

 $^{-2}$ -0.2

2

-4

blackman4: Blackman window with W = 4

blackman6: Blackman window with W = 6

blackmanharris4: Blackman-Harris window with W = 4

blackmanharris6: Blackman-Harris window with W = 6

References

BLU, T., THÉVENAZ, P., and UNSER, M. 2001. MOMS: Maximal-order interpolation of minimal support. *IEEE TIP*, 10 (7):1069–1080.

BLU, T., THÉVENAZ, P., and UNSER, M. 2004. Linear interpolation revitalized. IEEE TIP, 13(5):710-719.

BLU, T. and UNSER, M. 1999. Quantitative Fourier analysis of approximation techniques: Part I—Interpolators and projectors. *IEEE TSP*, 47(10):2783–2795.

CATMULL, E. and ROM, R. 1974. A class of local interpolating splines. In Computer Aided Geometric Design, pages 317–326.

- CONDAT, L., BLU, T., and UNSER, M. 2005. Beyond interpolation: optimal reconstruction by quasi-interpolation. In *IEEE ICIP*, volume 1, pages 33–36.
- DALAI, M., LEONARDI, R., and MIGLIORATI, P. 2005. Efficient digital pre-filtering for least-squares linear approximation. In *VLBV LNCS 3893/2006*, pages 161–169.

DODGSON, N. A. 1997. Quadratic interpolation for image resampling. IEEE TIP, 6(9):1322-1326.

KEYS, R. G. 1981. Cubic convolution interpolation for digital image processing. IEEE ASSP, 29(6):1153-1160.

- MEIJERING, E. H. W., ZUIDERVELD, K. J., and VIERGEVER, M. A. 1999. Image reconstruction by convolution with symmetrical piecewise *n*th-order polynomial kernels. *IEEE TIP*, 8(2):192–201.
- MITCHELL, D. P. and NETRAVALI, A. N. 1988. Reconstruction filters in computer graphics. Computer Graphics (Proceedings of ACM SIGGRAPH 1988), 22(4):221–228.

SCHAUM, A. 1993. Theory and design of local interpolators. CVGIP, 55(6):464-481.