Shape compression using spherical geometry images

Shape compression using spherical geometry images
Hugues Hoppe, Emil Praun.
MINGLE 2003 Workshop. In Advances in Multiresolution for Geometric Modelling, N. Dodgson, M. Floater, M. Sabin (eds.), Springer-Verlag, 27-46.
Concise shape description exploiting 2D image compression techniques.
Abstract: We recently introduced an algorithm for spherical parametrization and remeshing, which allows resampling of a genus-zero surface onto a regular 2D grid, a spherical geometry image. These geometry images offer several advantages for shape compression. First, simple extension rules extend the square image domain to cover the infinite plane, thereby providing a globally smooth surface parametrization. The 2D grid structure permits use of ordinary image wavelets, including higher-order wavelets with polynomial precision. The coarsest wavelets span the entire surface and thus encode the lowest frequencies of the shape. Finally, the compression and decompression algorithms operate on ordinary 2D arrays, and are thus ideally suited for hardware acceleration. In this paper, we detail two wavelet-based approaches for shape compression using spherical geometry images, and provide comparisons with previous compression schemes.
Hindsights: It is interesting that we obtain compression rates that are more aggressive than in traditional image compression. This reflects the fact that the geometry of individual shapes is rather smooth, and in some sense contains less information than typical images.
Springer-Verlag Copyright Notice
The Author may publish his/her contribution on his/her personal Web page provided that he/she creates a link to the above mentioned volume of LNCS at the Springer-Verlag server or to the LNCS series Homepage (URL: and that together with this electronic version it is clearly pointed out, by prominently adding “© Springer-Verlag”, that the copyright for this contribution is held by Springer.