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Parallel View-Dependent Level-of-Detail Control

Liang Hu, Pedro V. Sander and Hugues Hoppe

Abstract—We present a scheme for view-dependent level-of-detail control that is implemented entirely on programmable graphics
hardware. Our scheme selectively refines and coarsens an arbitrary triangle mesh at the granularity of individual vertices to create
meshes that are highly adapted to dynamic view parameters. Such fine-grain control has previously been demonstrated using
sequential CPU algorithms. However, these algorithms involve pointer-based structures with intricate dependencies that cannot be
handled efficiently within the restricted framework of GPU parallelism. We show that by introducing new data structures and dependency
rules, one can realize fine-grain progressive mesh updates as a sequence of parallel streaming passes over the mesh elements. A
major design challenge is that the GPU processes stream elements in isolation. The mesh update algorithm has time complexity
proportional to the selectively refined mesh, and moreover can be amortized across several frames. The result is a single standard
index buffer than can be used directly for rendering. The static data structure is remarkably compact, requiring only 57% more memory
than an indexed triangle list. We demonstrate real-time exploration of complex models with normals and textures, as well as shadowing
and semitransparent surface rendering applications that make direct use of the resulting dynamic index buffer.

Index Terms—Level-of-detail, efficient rendering, multiple-GPU techniques.

1 INTRODUCTION

FFICIENT rendering of complex geometric models

has been an active research area for over a decade,
with many level-of-detail (LOD) representations offering
tradeoffs in fidelity and speed. Intuitively, models that
are far away are rendered as coarser meshes. The most
challenging setting is a large-scale model that cannot
easily be partitioned into independent parts. Its surface
mesh must be adapted in real-time to selectively refine
the nearby visible regions. Several solutions to this view-
dependent LOD problem have been explored previously,
as reviewed in Section 2.

Many early techniques for view-dependent LOD pro-
vide fine granularity via vertex splits and edge collapses
(Figure 1la). These techniques require sequential CPU
algorithms to update pointer-based data structures with
intricate dependencies, and are therefore difficult to
implement efficiently on present system architectures.
First, the sequential algorithms cannot benefit from the
available GPU parallelism. And second, because the
mesh is modified in system memory, a duplicate copy
must be transferred to video memory at every frame for
rendering. As a consequence, more recent LOD research
instead focuses on coarsely partitioning the mesh and
storing static buffers in video memory. The sacrifice in
LOD granularity is offset by an improvement in frame
rate.

Contribution:  In this paper, we present a framework
that allows vertex-level LOD updates to be performed in
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parallel on the GPU, with all the data residing in video
memory. Our approach makes use of the programmable
geometry shader introduced in recent GPUs, which is
able to process a stream of elements in parallel.
Parallel view-dependent LOD control is a daunting
problem. We must perform “surgery” over an entire
mesh as a parallel process, to both coarsen and refine it
adaptively, while maintaining consistent connectivity, i.e.
a watertight surface without holes, Tjunctions, or dupli-
cate faces. Moreover, the computational model for GPU
streaming has major restrictions. Each stream element is
processed in complete isolation from all others, and a
streaming pass cannot both read from and write to the
same memory buffer. In light of this, we were initially
unsure that a practical solution would be realizable.

Approach overview: Previous fine-grain LOD algo-
rithms all use a traditional mesh data structure, in which
each triangle face contains references to its 3 neigh-
boring faces. We soon discovered that such a structure
poses an obstacle because updating the references in
parallel is unwieldy. Face references cannot be read
and written in the same pass, and become stale after a
single modification. One of our insights is to design new
data structures that obviate the need for face neighbor
references. In turn, the absence of neighbor information
requires new dependency conditions for vertex split and
edge collapse operations within the progressive mesh
structure (Section 3).

Our runtime representation has two main parts (Sec-
tion 4). A set of static structures encode a progressive
mesh hierarchy for the detailed input mesh. In addition,
a set of dynamic structures encode the active, selectively
refined mesh. A unique aspect is that the active mesh
is fully specified by a stream of vertices. This stream
contains all vertices “above” the active frontier in the
vertex hierarchy, and simultaneously identifies both (1)
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the active vertices, which are on the frontier, and (2) the
active faces, which are created by vertices split above the
frontier.

We perform a set of parallel streaming passes to
update the vertex stream as the view parameters change,
and to create an index buffer for rendering (Section 5).
All per-frame computations are performed in time pro-
portional to the complexity of the active mesh rather
than the fully detailed input mesh. Additionally, we
automatically partition this computation across multiple
frames to maintain a fixed frame rate (Section 6).

2 PREVIOUS WORK

There is vast literature describing different simplifica-
tion and LOD management strategies, as well as dif-
ferent error metrics and criteria. For a comprehensive
overview, including the original CPU-based geometry
update methods, refer to Luebke et al. [1].

Early CPU methods for view-dependent LOD over
arbitrary meshes use fine-grain updates based on vertex
splits and edge collapses [2],[3] or octree-based vertex
clustering [4]. As the GPU has become more powerful,
more recent methods typically maintain a fixed set of
static buffers in video memory, and switch or geomorph
among them [5],[6],[7].

An interesting special case is that of terrain, in which
vertices lie on a regular 2D grid. Methods specialized
for terrain grids are based on both fine-grain mesh
updates [8],[9],[10], and coarse-grain updates [11],[12].
More recent work renders nested regular grids about
the viewer [13]. Our work differs in that it handles the
general case of arbitrary meshes.

Programmable graphics hardware has allowed many
surface tessellation approaches to migrate to the GPU,
including isosurface extraction [14],[15], parametric
patches [16],[17],[18],[19], subdivision surfaces [20],[21],
and procedural detail [22][23]. Whereas these ap-
proaches are typically used to amplify coarse geometry,
our refinement framework is designed to exactly repro-
duce an arbitrary detailed mesh.

Two recent GPU-based LOD techniques are most
closely related to our goal of faithfully preserving detail
of an arbitrary input mesh. DeCoro and Tatarchuk [24]
present a scheme for simplifying arbitrary meshes using
octree-based vertex clustering. This clustering strategy
avoids precomputation and storage of a vertex hierarchy,
but the resulting approximating meshes are less accurate.
Jietal. [25] also perform LOD computations on the GPU.
Their technique first resamples the input model onto a
regular remesh over a polycube map. A vertex shader
is used to displace inactive vertices to infinity. One key
difference of our work from these two techniques is that
we do not require traversing the entire representation
(e.g. the fully detailed input mesh) at every frame.
Instead, our per-frame computation is only proportional
to the (selectively refined) rendered mesh.

Our system is the first to perform real-time vertex-
granular LOD over arbitrary triangle meshes on the

GPU [26]. This work extends the presentation of our
approach and provides additional usage scenarios for
this level-of-detail control. We describe how our scheme
is particularly beneficial for the rendering of shadows,
semi-transparent surfaces, and translucent surfaces, be-
cause in these multi-pass rendering approaches the same
simplified mesh is rendered multiple times per frame.

3 HIERARCHY AND REFINEMENT DEPENDENCIES
3.1 Vertex hierarchy

Our view-dependent LOD algorithm uses the vertex hi-
erarchy of a progressive mesh (PM) [2],[3]. The construc-
tion is based on that of Hoppe [3], with modifications
tailored to our parallel LOD update algorithm.

Given an arbitrary mesh M™, a hierarchy is built by
applying a prioritized sequence of edge collapses:

colyn 1
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sply
where col, is the collapse that creates vertex v, spl, is the
reverse operation that splits v, and MY is the base mesh
that results after all the collapses. Our method restricts
the collapses to half-edge collapses to produce a compact
read-only vertex buffer [27].

Figure 1a shows a collapse and the split that inverts
the operation. The pair of faces f and f7, which are
adjacent to v; and v,, are removed by col,, and are
created by spl,. During PM construction, we reorder
the 3 vertices of every face in M™ such that when
performing col,,, the vertices in f7 and f} are {v, vy, v}
and {vy,v¢, v, } respectively.

Figure 1b shows the subtree rooted at v in a vertex
hierarchy. The leaves are the vertices in M"™, and each
non-leaf vertex v results from the collapse of its two
children v¢ and wv,. Since half-edge collapses are used,
v has the same attributes (e.g., position, normal) as its
left child v, and transitively its leftmost descendant leaf,
denoted as v;-. Thus we need only store vertex attributes
for the leaves, and access them for any vertex v using vy-.
We let vP denote the parent of v, i.e. (v;)” = v. The vertex
hierarchy is linearized in memory, with vertices assigned
indices in the reverse order that they were collapsed.
Thus the leaf vertices are consecutive and last, and can
be distinguished from non-leaf vertices solely by their
index. The ordering also implies that v > v? for any
vertex v.

A selectively refined mesh, denoted M, corresponds
to a frontier of active vertices within the hierarchy, as
illustrated in Figure 1b. This frontier partitions the (non-
leaf) vertices into split and collapsed states.

spln—1

3.2 Refinement dependency structure

To prevent foldovers of the triangles in the mesh, the
splits and collapses must adhere to dependency rules.
In order to produce a compact vertex hierarchy and
perform efficient runtime tests on the GPU, we introduce
a new dependency structure. The explicit rules [3] incur
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(a) The neighborhood around a split/collapse operation on a vertex v. (b) the vertex hierarchy showing a
subtree rooted at vertex v. Splitting v generates vertices v, v, and the pair of faces {f, f/'}. A selectively refined
mesh M corresponds to a frontier of active vertices. All vertices above this frontier, colored blue, have been spilit,
whereas all vertices colored green are in their collapsed state. The leaf vertices of the triangles f and f are shown
with their locations in the hierarchy. (c) The set of split (blue) vertices that are processed during selective refinement
are stored in the VertexStream stream, while the state of all vertices is kept in the VertexState texture.

Fig. 1.

extra memory, whereas the implicit rules [28] are too
restrictive and would require many more unnecessary
vertex splits to meet the view-dependent criteria. Addi-
tionally, they all require relatively complex runtime tests.
Our proposed approach follows the same refinement
flexibility as the explicit rules, but with a more compact
representation inspired by the implicit rules, and most
importantly it is well adapted to GPU stream processing
due to its simplicity. The memory footprint is smaller
than both earlier representations. The splits are only
dependent on a smaller mesh neighborhood, while still
conforming to the old dependency rules (Figure 2).

During the PM construction, for each col,, each re-
moved face f and f“ is adjacent to two other mesh
faces, {f, , f, } and {f} , fr.} respectively, as shown in
Figure la. At runtime, the explicit rules [3] check for
the presence and adjacency of these four faces in the
current selectively refined mesh. Specifically the rules are
as follows:

(i) A split spl, is legal if the faces {f}, , fi , fr,, fr, } all
exist in the current selectively refined mesh.
(i) A collapse col, is legal if f} is currently adjacent to

{fy., £y } and f? is currently adjacent to {f" , f»_}.

Unfortunately, test (ii) involves maintaining face adjacen-
cies, which is difficult in a parallel algorithm. Our ap-
proach is to perform a simpler check that involves stor-
ing two vertex indices instead of four face indices. Specif-
ically, we precompute vima, = max(c,(fy, ), co(fy,)) and
Vrmaz = max(cy(fy,),co(fr,)) where cv(f) is a non-
ancestral vertex split ‘that creates f- More precisely, ¢, (f)
is the vertex z whose split creates face f, unless f € M°
or z is an ancestor of v, in which cases ¢,(f) = 0. At
runtime, given the side vertices v; and v, in M, we can
check legality as follows:

........... MO
Base mesh
VertexStream

‘ Performed spl,,
@ Performed col,
O Leaf vertex € M™

o Active vertex of
a triangle € M

o Leaf vertex of
a triangle € M™

VertexState

(b) (c)

El-Sana and Ours
Varshney [28]

Fig. 2. To apply the dependency rules of Hoppe [3],
each vertex split considers the four adjacent faces (left),
whereas the rules of El-Sana and Varshney [28] use
information on the entire 1-ring vertex neighborhood is
used. Our representation is more compact and simply
requires checking against two adjacent vertices v; and v,..

Hoppe [3]

(I) A split spl, is legal if v; > Vymaz and vy > Vrmag.
(I) A collapse col, is legal if (v;)? < v and (v,)? < v.
As proven in the appendix, our dependency rules con-
form to the explicit rules.

4 DATA STRUCTURES

Our framework maintains a static VertexBuffer holding
the vertex attributes, and a dynamically updated In-
dexBuffer holding 3 vertex indices per triangle face. These
structures are used to render the selectively refined
mesh using a generic vertex shader. To maintain the
IndexBuffer, several static and dynamic data structures
are required. These data structures, which are listed in
detail in Table 1, are stored on the GPU using sequential
buffers. Note that we keep a double-buffered IndexBuffer
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to allow asynchronous update of one index buffer, amor-
tized over multiple frames (Section 6), while rendering
the mesh using the other index buffer.

4.1 Static structures

The vertex hierarchy is stored in the VertexTree buffer.
For each vertex v we store the indices v, v,, v+ and
vP. Vertex v is also associated with the two triangle
faces f and f! that are removed from the mesh by
the collapse col,,. However, we do not keep their indices
explicitly with v, since they are simply 2v and 2v + 1.
To guarantee consistency on meshes with boundaries,
where col, may remove only one face f/ at the boundary,
we duplicate f’ as f} and insert it into M™. Note that
this does not incur any additional rendering cost, and
requires negligible memory since there are typically only
a small fraction of boundary faces. Additionally, we store
parameters used for view-dependent refinement of the
non-leaf vertices in the RefineCriteria buffer.

The OrigFaces buffer stores for each face in the original
mesh M" its vertex indices {vg, v1,v2} (i.e. 3 leaves in the
vertex hierarchy). These indices are normally stored as
32-bit integers to support large models, so each face in
OrigFaces would require 12 bytes. However, since meshes
with more than 22 vertices (33.5M triangles) would
occupy more than the 1GB of available video memory,
our implementation uses 24 bits per index (9 bytes per
face), and uses the saved 3 bytes per face to encode the
indices v anNd Vyynee from Section 3.2.

Buffer BaseFStream stores the indices of the faces in
the base mesh MY. And, the indices of the vertices in
M? (i.e. the root vertices in the hierarchy) are stored in
a buffer BaseVStream to better parallelize the update of
VertexStream, as described in Section 5.

4.2 Dynamic structures

The dynamic structures are shown in Figure lc. The
VertexState texture stores for each vertex in the hierarchy
one of three possible states: {collapsed, split, splitting}. As
their names suggest, the split and collapsed states identify
vertices that have or have not been split, respectively.
The state splitting is needed by the algorithm to identify
vertices that are currently being split. For details, refer
to Section 5. Note that all vertices in the hierarchy
that are above the frontier are in either split or splitting
state, while the others are in collapsed state, as shown in
Figure 1bc using blue and green vertices, respectively.
We do not have to associate states with the leaves since
they cannot split. Due to GPU hardware constraints, we
store VertexState as a 2D texture instead of a buffer.
Finally, the main data structure of our algorithm is
the VertexStream buffer, which contains a dynamically
updated list of all the vertices that have been split (i.e.,
those that are above the frontier). This buffer is useful
for identifying both the active vertices and active faces
in the current selectively refined mesh. Specifically the
set of active vertices (i.e., those on the frontier and in

TABLE 1
Buffers used in runtime selective refinement.

BUFFERS ELEMENTS CARDINALITY MEMORY
Static structures
Position 12n
VertexBuffer Texcoord L 4n
Normal 4n
{vt, vy, vex } I 12n
VertexTree oP LI qn
RefineCriteria {04, rv, sin2 ay} 1 4n
) {vo,v1,v2} n 18n
OrigFaces Vimas (Urmaz) M 6n
BaseVStream v MO i
BaseFStream f MO —t
Dynamic structures
VertexState Ustate I n
VertexStream v M 4dm X 2
IndexBuffer {vo,v1,v2} M 24m X 2
Total 69n + 56m

Labels L and I denote leaf and non-leaf nodes of the vertex hierarchy.
Memory usage is in bytes, where n and m are the number of vertices
in the original mesh M™ and active mesh M respectively. T Typically
the base mesh M° has negligible complexity.

collapsed state) and the set of active faces are defined as
follows:

U v = U U {z | Tstate = collapsed}, (1)

veM v€ VertexStream z€{vy,v,}

U f = BaseFStream U ( U

feM v€E VertexStream

{1 fﬂ) - @

Note that we keep two VertexStream buffers, and ping-
pong between them to avoid read-modify-write hazards
(Section 5).

5 RUNTIME ALGORITHM

The runtime algorithm dynamically updates IndexBuffer,
which stores the triangles in the selectively refined mesh.
The update consists of three processing steps as outlined
in Figure 3. The first step checks for desirable edge
collapses and vertex splits, and updates the vertex states
accordingly; the second step updates and maintains the
stream of active vertices based on the updated states;
and the final step generates the index buffer using the set
of split vertices and the updated frontier implied from
the states. Next, we describe each of the steps. Listing 1
provides detailed pseudocode.

UpdateVertexState: ~ We check for splits and collapses
according to the three view-dependent criteria — view
frustum, surface orientation and screen-space geometric
error — from Hoppe [29]. Additional splits may be re-
quired to enforce the dependency rules. The algorithm
starts by first setting the states of all elements in Ver-
texStream to collapsed. Next, it traverses the vertices in
VertexStream to update their states. This is accomplished
by generating point primitives in the geometry shader and
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VertexStream
VertexBuffer
IndexBuffer
UpdateVertexState
VertexTree
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Fig. 3. The 3-step selective refinement algorithm.

rendering the updated state to the VertexState texture,
which is addressable by vertex index. In the traversal, we
set the state of the vertices that do not collapse to split.
For the children of the vertices in VertexStream that are
active in M (following (1)), we test if they should split,
and if so, update their states to splitting. In addition,
we also test their children. By doing so, we allow up to
two hierarchy levels to split simultaneously within each
update iteration, thereby resulting in a more efficient
update.

Satisfying all split dependencies for the new splits
would require performing recursive updates by forcing
splits on potentially remote vertices in the mesh. Such
splits can be arbitrary in number and in nesting within
the hierarchy. Hoppe [3] makes use of a stack to record
and then force the chain of required splits. Unfortunately,
such an approach is infeasible on the GPU due to the lim-
itations on the output size of a geometry shader instance.
A naive approach would be to mark dependent splits
and wait multiple iterations until all dependencies are
satisfied before splitting a vertex. However, this would
cause a significant temporal lag in LOD refinement.

To overcome this problem we introduce a cascaded up-
date method that updates new splits without respecting
their dependencies, and forces the adjacent constraining
vertices to split in subsequent updates. Specifically for
each spl,,, we continue splitting the active side vertices
vy and v, in f and f} every iteration as long as they
still constrain spl,. This scheme lets the level-of-detail

Listing 1 Pseudocode for the 3 steps of our algorithm
/7 Step 1
procedure UpdateVertexState

1: for v € VertexStream in parallel do

2: Ustate < collapsed

3: for v € VertexStream in parallel do

4: Ur < (flv)vy Ur < (f:)m

5. if Active(v¢) and Active(v,) and not VDCoarsen(v) then
6: Vstate < Spllt

7. for z € {v;, v} do

8: if Active(x) then

9: for y € {z, 2, 2.} do
10: if VDRefine(y) then
11: Ystate < splitting
12: if v} < Vimae then
13: (V1) state < splitting, ((vi)?)state < split
14:  if v, < Vrmaz then
15: (vr)state < splitting, ((vr)?)state < split

function bool Active(v)
1: // return vsiqee = collapsed // leads to read-write hazard
2 return v = (vP); 2 v =(f")u v=(f")v,

function bool VDRefine(v)
1: Test view-dep. refinement criteria using {d,, 70, sin” a, }.

function bool VDCoarsen(v)
1: return (v;)? < v and (v,)? < v and not VDRefine(v)

// Step 2
procedure UpdateVertexStream
1: for v € BaseVStream in parallel do
2: Output v
: for v € VertexStream in parallel do
for z € {v,v,} do
if Zstate # collapsed then
Output =
fory € {z¢,z,} do
if Tsiate = splitting and ystase = splitting then
Output y

O PN AEw

// Step 3

procedure UpdateIndexBuffer
1: for f € BaseFStream in parallel do
2 OutputFace(f)
3: for v € VertexStream in parallel do
4:  OutputFace(f;’), OutputFace(f,)

function OutputFace(f)
1: for v € OrigFaces[f] do
2:  while (v?)state = collapsed do
3: v — vP
4:  Output v

adapt more quickly, as it takes many fewer algorithm
iterations to fully propagate the splits. The drawback is
that it may result in temporary foldovers in the mesh
surface. However, these temporary foldovers introduced
by the view-dependent algorithm are rare (e.g. no more
than 0.1% of the faces even for fast camera motions in the
Dragon sequence), typically involve thin sliver triangles
that are nearly invisible, and are corrected quickly by
the LOD update. Consequently they are not noticeable
in our experiments.

Forcing the splitting of adjacent vertices may be in
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conflict with desired collapses on the same vertices, and
it is impossible to explicitly identify these conflicts in
one pass since they arise in parallel execution paths. We
resolve these conflicts by performing additional compen-
sating splits. Specifically, for the side vertices v; and v,
that are involved in the dependent splits from v, we also
update the states of their parents (v;)? and (v,)? to split,
in case the parents are collapsing in their own executing
instances.

UpdateVertexStream:  The second step outputs an
updated VertexStream by using the stream out function-
ality. In this step, the algorithm traverses the vertices in
VertexStream and outputs all child vertices that are not
in collapsed state. We output the children rather than the
vertices themselves to save one state check per instance.
We output the root vertices in BaseVStream directly in a
quick preceding pass. Newly split vertices that are two
levels deeper in the hierarchy are identified and output
as well.

UpdateIndexBuffer:  Finally, we update IndexBuffer by
writing out the active triangle faces of M (following (2)).
More specifically, the indices of the active vertices in
every pair of faces {f, f’} associated with each split
vertex v in the updated VertexStream are streamed out to
IndexBuffer. We obtain the indices of the active vertices
in M by retrieving the indices of the leaf vertices in the
same faces in M™ from OrigFaces, and searching up the
hierarchy for the coarsest vertices in collapsed states. An
additional preceding pass streams out the triangle faces
in M° by traversing BaseFStream.

_ Time per frame No amortization
j_ \
&

Naive amortization Per-step amortization  Full amortization
I [ [ o .
\ | | ]

R g
]

Fig. 4. Amortization mechanisms. The width of each bar
represents the time incurred by that step of the update
algorithm. Full amortization manages to keep frame times
low and consistent.

6 AMORTIZED COMPUTATION

Geometry LOD algorithms often amortize the refinement
computation over multiple frames to maintain a desired
framerate [3]. Our runtime update algorithm involves
three update steps that require different amounts of time.
A naive amortization that performs one update step per
frame leads to oscillations in frame times (see Figure 4).
To try to maintain an upper bound 7™ on the frame time
(e.g., 33.3ms), at the beginning of each update iteration,
we dynamically partition the update steps. We explore
two such mechanisms.

TABLE 2
Statistics for the original meshes used in our
experiments and the number of faces used in the
selectively refined meshes shown in Figure 7.

Input meshes | Meshes in Figure 7

Model Total Memory | Rendered  Rendering

name # faces (MB) # faces time (ms)
Lucy 2,000,000 65.8 88,432 4.6
Terrain 2,097,147 69.0 179,013 7.5
Dragon 7,218,906 237.5 290,892 15.2
Statue 10,000,000 329.0 389,566 222

Per-step amortization: = The first mechanism partitions
each step i € {1,2,3} individually. Specifically, at al-
gorithm iteration k, it partitions the input stream S¥
for step i uniformly into N} segments (see Figure 4).
The number of segments N} is estimated based on the
previous iteration as

Nk:_ ‘S’f| Tik:71
CofisE T

where TF~! is the total time spent in step i in the
previous iteration. The mechanism automatically adapts
to the update load of the selectively refined mesh at
runtime, but still suffers from frame time oscillations due
to the absence of load balancing across different steps of
the algorithm.

Full amortization: = The second mechanism alleviates
this problem by allowing multiple algorithm steps to be
executed within the same frame (see Figure 4). As in the
previous approach, this method also keeps an estimate of
the cost of each step based on the previous update. The
algorithm determines what fraction of the current step
can be executed within the current frame time budget 7.
If the step can only be executed partially, the remainder
is carried over to the following frame. If the step can be
executed fully, then the algorithm again determines what
fraction of the upcoming step fits within the remaining
budget and can be executed. The algorithm proceeds in
this fashion until it exhausts the time budget.

7 RESULTS

We implemented our algorithm in Microsoft DirectX 10
using an Intel Core2 CPU with 2GB memory and an
NVIDIA GeForce 8800 GTX graphics card. All shaders
are written in HLSL using shader model 4.0. For all
examples we use a window size of 1280 x 800 pixels
and a screen-space error tolerance of 1 pixel.

Frame rate:  Figure 7 shows selectively refined meshes
for the models in Table 2.

Figure 5 graphs the relationship between the number
of faces in the current active mesh M and the time it
takes to perform all of the algorithm passes. With a static
viewpoint, the processing time is nearly linear on M.
This linear-time computation has been observed for all
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(d)

Fig. 7. Renderings of our selectively refined meshes with a procedural texture (a) and in wireframe mode (b). The
same mesh is then visualized from a different viewpoint in wireframe mode (c), and with color-coded LOD (d), where
green represents higher detail than red. Note that mesh regions that lie outside the frustum, farther away, or facing
away from the camera, have lower LODs. The error tolerance is less than one pixel.

of the models in our test suite. Figure 5 also graphs the
processing time when using a typical camera motion
(dynamic viewpoint). Note that the introduced splits
and collapses cause additional processing and geometry
amplification, thus slowing down the update. The added
GPU data amplification cost is not prohibitively expen-
sive and the relationship remains roughly linear on the
size of M. The variation is due to the differing number
of splits and collapses for the measurements.

Figure 6 (top) graphs the frame time of each amorti-
zation method for a Statue rendering sequence using a
target frame time upper bound 7™ of 33.3 ms. Without
amortization, the cost incurred by the update is clearly
above the desired frame time. Naive amortization parti-
tions the update into 3 frames thereby improving frame
time significantly. However, due to the high relative costs
among the update passes, the frame time still oscillates
heavily. Per-step amortization further partitions each

step to ensure that frame times are no higher than
T*. Note, that, while it reduces frame times, varying
step costs may still cause significant oscillation. Finally,
the full amortization method is able to better maintain
the target frame rate by allowing multiple passes to
be processed within the same frame, as described in
Section 6. Note, however, that a completely stable frame
time cannot be guaranteed since the GPU algorithm
cannot predict drastic changes in M, which would result
in immediate slowdowns in some of the passes. There-
fore, occasional performance spikes are unavoidable.
However, even with the fast camera motions shown in
the accompanying video, the spikes are rare and do not
significantly harm the observed frame rate across this
entire sequence.

Both per-step and full amortization manage to reduce
frame time to the desired target bound 7. When only
considering these two satisfactory options, full amorti-
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are necessary (static viewpoint), and when splits and
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Fig. 6. Timings measurements (top) and algorithm it-
erations per second (bottom) for the Statue rendering
sequence using different amortization strategies.

zation manages to accommodate the entire update in
fewer frames, as predicted in Figure 4 and evidenced
in Figure 6 (bottom), which graphs the total number of
iterations per second.

Memory analysis:  Our data structures use a total of
69n + 56m bytes, where n and m are the numbers of
vertices in the original and active meshes respectively.
For sufficiently detailed models, it is generally impossi-
ble to view all surface regions at high resolution within a
frame, so typically m < n. Thus the memory bottleneck
is the size 69n of the static portion of our structures.
Storing the original mesh as a traditional indexed trian-
gle list requires 44n bytes (20n for the VertexBuffer and
24n for the IndexBuffer). Thus, in comparison, only 57%
more memory is required for our static data structures.
Also as shown in Table 3, ours compares favorably
with previous view-dependent LOD schemes, which is

TABLE 3
Comparison of memory size with prior schemes.

View-dependent LOD scheme  Memory size (bytes)

VDPM [3] 216n
SVDLOD [29] 88n + 100m
MT [30] 75n

VDT [28] 90n
FastMesh [31] 88n + 6m
Our scheme 69n + 56m

The variables n and m denote the numbers of vertices in the original
and active meshes respectively.

surprising given our challenging parallelism restrictions.
In addition, most prior schemes perform immediate-
mode rendering (e.g. with glVertex() calls), whereas our
dynamic data structures (56m bytes) maintain explicit
index buffers that permit more efficient rendering on
present graphics systems.

Limitations: Our index buffers define indexed triangle
lists rather than strips, so take more space than an
optimized static mesh. Also, the ordering of faces within
this list is not optimized for vertex cache locality. Finally,
our system does not yet support geomorphs [32] for
smooth temporal transitions. However, the LOD updates
are fast and the screen-space error tolerance is small
enough that popping is nearly imperceptible.

8 USAGE SCENARIOS

As opposed to cluster-based approaches, our vertex-
granular level of detail technique produces a single
generic index buffer. This facilitates rendering in tra-
ditional graphics systems since the buffer can be used
directly by any standard rendering algorithm. More
importantly, it introduces no additional processing over-
head. This is particularly advantageous for multi-pass
rendering techniques, where the index buffer needs to be
traversed multiple times per frame. We therefore apply
our algorithm to direct implementations of semitranspar-
ent surface rendering and shadow mapping techniques.
These techniques do not need to be modified at all and
can immediately take advantage of the geometry level
of detail provided by our approach in order to improve
rendering times.

Shadow mapping from multiple light sources:

Shadow mapping [33] is the most prevalent technique
for real-time shadow generation and display. The algo-
rithm first renders the scene from the point of view
of the light source, storing the depth information in a
shadow map. On a subsequent pass, when the scene is
rendered from the observer’s point of view, a distance
comparison is performed per pixel to determine whether
there is an object occluding the pixel’s view of the light.
If multiple light sources are used, multiple rendering
passes are needed in order to generate the shadow maps.
For this application, we use a standard implementation
of shadow mapping and accumulate shadows from the
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Fig. 8. Renderings of our selectively refined meshes using shadow maps from multiple light sources.

Dragon, 433K out of 7.2 M triangles

o>

Lucy, 128K out of 2M triangles

Fig. 9. Semitransparent renderings of our selectively refined meshes using a multi-pass approach based on depth

peeling.

multiple light sources. Figure 8 shows the results, which
directly apply shadow mapping to our active index
buffers. Rendering speed is improved by a factor of 6—
11x when compared to rendering the original meshes
from the same viewpoints. The resulting images have
no visible quality degradation.

Order-independent transparency and translucency:

In the presence of semitransparent surfaces, physically
correct rendering is order-dependent. The difficulty lies
in the fact that the geometric primitives composing the
scene do not have the proper view-dependent depth or-
dering. Depth peeling [34] allows processing fragments
at each screen pixel location in depth order. This is
accomplished by peeling layers of the geometry in suc-
cessive rendering passes. The algorithm can be efficiently
implemented in commodity graphics hardware [35]. We
use a direct implementation of the multi-pass depth
peeling algorithm and render the scene in back-to-front
order, properly alpha blending the different layers of the
geometry. As with the shadowing application, we can
easily apply the algorithm directly to our index buffer.
The renderings in Figure 9 yield speedups of 5-8 x when

compared to rendering the original meshes, without
visible quality loss. The multi-pass depth-peeling ap-
proach can also be used to simulate translucent effects
with Fresnel shading [36] at each surface intersection, as
shown in Figure 10. This technique resulted in speedups
of 7-10x.

9 CONCLUSION AND FUTURE WORK

We present the first view-dependent LOD algorithm for
vertex-level mesh refinement that operates entirely on
the GPU. Our scheme performs general vertex splits and
edge collapses to incrementally and selectively refine an
irregular hierarchy as a sequence of parallel streaming
steps. The approach is highly parallel, processing many
splits and collapses simultaneously. Because the mesh is
updated and rendered using a constant number of draw
calls, CPU utilization is near zero. The cost of these draw
calls is further amortized over multiple frames using a
simple feedback mechanism.

One of our contributions is to overcome the difficulties
imposed by GPU parallel processing. This involves a
new, compact dependency structure and a cascaded
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Fig. 10. Translucent renderings of our selectively refined meshes, also using multi-pass depth peeling.

update method. In future work, it would be interesting
to consider more general parallel processing APIs. For
instance, NVIDIA’s CUDA and AMD’s Stream Comput-
ing interfaces expose local shared memory and allow
scattered reads and writes to the same memory bulffer.
Note however that the current version of CUDA requires
computing a prefix sum [37] in order to compactly emit
a variable number of elements per thread, which is
essential to our approach. But it is likely that such APIs
will continue to improve in programming flexibility.

The parallel nature of our algorithm lets it scale with
the number of stream processors in the GPU. Thus we
expect greater performance gains as the GPU evolves
to include more processors. The stream-based approach
may also be applicable to other parallel architectures, as
it provides an elegant way to decouple an irregular re-
finement algorithm into dependency-free passes. Finally,
we hope that our ideas may inspire new algorithms
for handling irregular data structures within parallel
architectures.

APPENDIX

Lemma 1. The dependency rules (I) and (II) conform to (i)
and (ii) respectively, i.e., (i)=(1) and (ii)=(I).

Proof: (i)=(I): Suppose v; > Vjmqz. We first prove that
[, exists. By definition of vinaz, vi > ¢, (f,,) and v >
cy(fr,)- We denote z = ¢, (f,, ). The face f, existsin the
current selectively refined mesh if x = 0 by definition,
otherwise = # 0 and f, is created by spl,, which means
the vertex x is an ancestor of two vertices in triangle f .
Since = # 0, = is not an ancestor of v (and therefore v;).
And because v; is adjacent to f,, and v; > z, z must
be an ancestor of v;. Therefore f; also exists since spl,
has been performed otherwise v; would not be active.

The same argument holds for the existence of f;; , and
similarly supposing v, > Urmae, then {fy  f' } also
exist. Since (i) is true, it follows that whenever v; > Va0
and v, > Vpmaq, then {f2 . fr  fr  f } all exist, and spl,

niy’Jdng?Jnsg
is legal, i.e. (I) is true.

(i))=(Il): Since v; and v, are active, spl, has been
legally performed. According to Hoppe [3], {fy,, fn,}
and {f; , fy.} must be pairwise adjacent at the time of
spl,. Now suppose (v;)? < v. We first prove that f/ is
adjacent to f, . We denote f’ as the face adjacent to vy,
v; and f;, and denote z’ as the vertex such that spl,
creates f’. Suppose f’ # fV . a2’ cannot be an ancestor
of v; since f;, and f. would otherwise not be adjacent
when performing spl,. Then ' must be an ancestor of
v; because spl,. creates f’ and z’ is an ancestor of two
vertices in f’. Since f’ is adjacent to f;, spl,s must be
performed after spl, to be considered legal, i.e. ' > v,
since otherwise f; would not be present at the time of
sply. However as z’ is an ancestor of v;, 2’ < (v;)? < v,
which is a contradiction. Therefore f' = fy and f/ is
adjacent to f . By the same argument, it can be shown
that f is also adjacent to f; , and similarly supposing
(vp)P < v, then f? is adjacent to {f,, . }. Since (ii) is
true, it follows that if (v;)? < v and (v,)? < v, then f/
is adjacent to {f; , f; } and f is adjacent to {f}\ , f".}.
As a result, col, is legal, i.e. (Il) is also true. O
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