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Figure 1: Given a vector graphics drawing, we locally specialize its description to each cell of a lattice, and apply both prefiltering and spatially adaptive 
supersampling to produce high-quality antialiased renderings over arbitrary surfaces on the GPU.

Abstract 
We introduce a novel representation for random-access rendering 
of antialiased vector graphics on the GPU, along with efficient 
encoding and rendering algorithms.  The representation supports a 
broad class of vector primitives, including multiple layers of 
semitransparent filled and stroked shapes, with quadratic outlines 
and color gradients.  Our approach is to create a coarse lattice in 
which each cell contains a variable-length encoding of the 
graphics primitives it overlaps.  These cell-specialized encodings 
are interpreted at runtime within a pixel shader.  Advantages 
include localized memory access and the ability to map vector 
graphics onto arbitrary surfaces, or under arbitrary deformations.  
Most importantly, we perform both prefiltering and supersampling 
within a single pixel shader invocation, achieving inter-primitive 
antialiasing at no added memory bandwidth cost.  We present an 
efficient encoding algorithm, and demonstrate high-quality real-
time rendering of complex, real-world examples. 

1. Introduction 
Vector graphics are commonly used to represent symbolic infor-
mation such as text, maps, diagrams, and illustrations.  Because 
finding the color of an individual pixel within a vector graphics 
object requires traversing all its primitives, the object is usually 
rendered atomically into a framebuffer. 
In contrast, raster images offer efficient random-access evaluation 
at any point by filtering of a local pixel neighborhood.  Such 
random access allows images to be texture-mapped onto arbitrary 
surfaces, and permits efficient magnification and minification.  
However, images do not accurately represent sharp color discon-
tinuities: as one zooms in on a discontinuity, image magnification 
reveals a blurred or jagged boundary. 
As reviewed in Section 2, recent vector texture schemes explore 
encoding vector primitives within a raster structure, for instance 

to support discontinuities in images, or to encode glyph regions. 
Our aim is to directly model general vector graphics, composed of 
multiple semitransparent layers of overlapping gradient-filled and 
outlined primitives, including thin strokes that would be difficult 
to antialias properly when represented as filled primitives. 
Approach:  Like [Ramanarayanan et al. 2004], we construct a 
lattice in which each cell contains a local graphics description 
specialized to that cell region.  We store this local description as a 
variable-length stream that is parsed within a programmable pixel 
shader at rendering time.  The complexity of each cell stream is 
directly related to the number of vector primitives overlapping the 
cell, and thus complexity can be arbitrary and is only introduced 
where needed.  Moreover, processing time in the pixel shader also 
adapts to this complexity (subject to local SIMD parallelism), so 
that large areas of continuous color are rendered quickly. 
We show that traditional vector graphics can be quickly converted 
into cell-specialized streams using a novel lattice-clipping algo-
rithm that is simpler and asymptotically faster than hierarchical 
clipping schemes.  A unique aspect of the algorithm is that it 
requires a single traversal of the input graphics primitives. 
Benefits:  Cell-specialized streams nicely encapsulate the data 
involved in rendering a region of the domain.  Conventional 
vector graphics rasterization would traverse all input primitives 
and perform row-by-row updates to the output raster.  Instead, we 
read a small subset of specialized primitives (which gets cached 
across nearby pixels), combine the primitives within the shader 
(albeit with significant computation), and directly obtain the color 
of any individual pixel.  Such low-bandwidth localized memory 
access on both input and output should become increasingly 
advantageous in many-core architectures. 
Another benefit is antialiasing.  Because cell streams provide a 
(conservative) list of all primitives overlapping a pixel, we can  
evaluate an antialiased pixel color in a single rendering pass, 
without resorting to A-buffer fragment lists [Carpenter 1984].  
Our scheme combines the power of two antialiasing techniques: 
(1) approximate prefiltering within each vector primitive, and 
(2) supersampling across primitives.  Although supersampling 
adds computational cost, it involves no extra memory access.  
Moreover, we show that it is easy to spatially adapt the super-
sampling density to local graphics complexity, e.g. falling back to 
a single sample per pixel in regions of continuous color.  Such 
sampling adaptivity has only recently been explored in real-time 
rendering applications [Persson 2007]. 

  



 

Our cell-specialized graphics inherit advantages already shown in 
vector texture schemes.  Shape primitives can be encoded using 
lower-precision (e.g. 8- or 16-bit) cell-local coordinates.  Also, 
since the vector graphics can be evaluated entirely in a shader, 
they can be mapped onto general surfaces just like texture images. 
Contributions: 
• Variable-length cell streams for locally specialized encoding of 

general vector graphics including multiple layers and strokes; 
• Efficient construction from a vector graphics input, using a 

novel and efficient lattice-clipping algorithm; 
• Concept of overlapping extended cells for correct prefiltering; 
• Fast computation of approximate distance to a quadratic curve; 
• Fast anisotropic prefiltering approximation of thin strokes; 
• Low-bandwidth high-quality antialiasing by combining prefil-

tering and supersampling in a single pass; 
• Random-access vector graphics with linear and radial gradients. 

Limitations: 
• Rendering from cell-specialized representations assumes a static 

layout of graphics primitives in the domain, so animations 
would require re-encoding dynamic shapes at each frame 
(which fortunately is very fast); 

• The description of each vector path segment is replicated in all 
cells over which it overlaps, but there is little effective storage 
overhead because segments typically have small footprint; 

• All cells in the interior of a filled shape must include the shape 
color, just as in an ordinary image; on the other hand, there is no 
need to store a tessellation of the shape; 

• The current implementation does not support all vector graphics 
attributes, such as stylized strokes or image-space blur filters, 
but these can be implemented as pre- or post-processing; 

• Filtered minification requires fallback to a mipmap image 
pyramid, but this is true of all other approaches; 

• Because the cell descriptions have variable lengths, we must use 
an indirection scheme to compact the data. 

2. Related work 
Several schemes incorporate sharp outlines in a raster texture by 
encoding extra information within its pixels.  Prior GPU schemes 
limit the complexity of the outline within each image cell, such as 
a few line segments [Sen et al. 2003, 2004; Tumblin and 
Choudhury 2004; Lefebvre and Hoppe 2006], an implicit bilinear 
curve [Tarini and Cignoni 2005; Loviscach 2005], a parametric 
cubic curve [Ray et al. 2005], two quadratic segments [Parilov 
and Zorin 2008], or a fixed number of corner features [Qin et al. 
2006].  A drawback of fixed-complexity cells is that small areas of 
high detail (e.g. cities on maps, or font serifs) require fine lattices, 
which globally increases storage cost.  A quadtree structure 
provides adaptivity [Frisken et al. 2000], but still limits the num-
ber of primitives at the leaf nodes.  Our variable-length cell 
representation allows for graphics of arbitrary complexity. 
Most prior schemes consider a single layer of non-overlapping 
vector graphics.  An extension explored by Ray et al. [2005] is to 
create a specialized shader that implements a fixed compositing 
hierarchy of several vector textures.  However, such hierarchies 
may become impractical as the input complexity increases.  
Moreover, the high evaluation cost is uniform over all pixels. In 
essence, our scheme adaptively simplifies this hierarchy per cell. 
The feature-based textures of Ramanarayanan et al. [2004] allow 
each image texel to contain an arbitrary set of regions used to 
override smooth interpolation.  Their approach should be imple-

mentable on present GPUs, given a scheme to pack the variable-
length texel descriptions.  Whereas their strategy is to add discon-
tinuities to raster images, ours is to directly render general vector 
graphics.  This requires high-quality prefiltering (especially of 
thin strokes) and correct blending of transparent gradients, neither 
of which seems feasible with a region-based decomposition.  Our 
strategy of maintaining a layered description and representing 
paths explicitly was guided by these requirements. 
Like [Frisken et al. 2000; Loop and Blinn 2005; Ray et al. 2005], 
we use approximate distances to primitives for screen-space 
prefiltering.  Qin et al. [2008] present an iterative method for 
computing precise distances to curved segments within their 
radius of curvature.  We instead present a formula for approximate 
distance to quadratic segments that is spatially continuous and 
faster to evaluate. 
The recent work of Qin et al. [2008] builds on some of the ideas 
presented in a previous version of this paper [Nehab and Hoppe 
2007].  In particular, Qin et al. also consider general vector 
graphics defined as layers of filled and stroked primitives, use 
extended cells for correct prefilter antialiasing, and render thin 
curved strokes using a distance function.  Whereas they use 
corners to attempt to infer the sign of the distance from the nearest 
feature (which can lead to artifacts),  our features are simply the 
path segments themselves.  This simplicity, which comes from the 
fact that our inside/outside classification is separate from the 
distance computation, leads to an efficient representation that 
guarantees exact interior classification. 

3. Our vector graphics representation 
Our basic shape primitive is a path with linear and/or quadratic 
segments specified by a sequence of 2D points.  Cubic segments 
are adaptively subdivided into quadratic ones; these form an 
excellent approximation for rendering purposes.  Paths are defined 
by lists of points, each one marked by one of four possible tags: 
Moveto, Drawto, Curvepoint, or Last, as shown in Figure 2a. 
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Figure 2: Example vector graphics and its encoding. 

A layer associates a rendering state to the path, including whether 
it is stroked and/or filled, its color, and stroke width.  A filled path 
must be closed; we define its interior using the even-odd fill rule.  
The overall vector graphics consists of a back-to-front ordered list 
of layers, and is encoded as a stream of instructions (Figure 2b).  
The color specification consists of either a constant RGBA tuple 
or an index into an array of gradient descriptors (Section 6). 

4. Rendering 
Most rendering algorithms for vector graphics objects operate by 
rasterizing the input into an uniformly sampled output image.  
Instead, to support random-access, we must design an algorithm 
that can efficiently evaluate the color at any given point, in any 
order, as requested by a pixel shader program. 



 

The basic approach is to compute the color (including a partial 
coverage opacity) contributed by each graphics layer at the 
current pixel 𝑝, and to composite these colors in back-to-front 
order, all within a single invocation of the pixel shader. 

4.1 Compositing 
When compositing, it is vital to distinguish between the two 
sources of a layer’s transparency: the intrinsic transparency from 
its color specification (alpha component), and the partial coverage 
opacity near primitive boundaries.  Partial coverage must be dealt 
with in a linear color-space, lest dark primitives appear thicker 
than they should [Blinn 1998] (see Figure 3a-b).  Unfortunately, 
most content creation tools represent colors in a nonlinear, gam-
ma-adjusted space (e.g. sRGB [Stokes et al. 1996]), and perform 
compositing in this space.  Misguided by this feedback, artists 
select transparency parameters that would look entirely different if 
linearly composited (see Figure 3c-d).  Caught between the 
hammer and the anvil, we must resort to a hybrid blending opera-
tion that independently treats each source of transparency. 
Our hybrid blending operation takes an sRGB input layer color 𝑓 
(including an intrinsic alpha), a coverage opacity 𝑜 ∈ [0,1], and a 
background color 𝑐 in linear space, and returns the composite 
color also in linear space: 

blend�𝑐, 𝑓, 𝑜� = lerp �sRGB−1 �over(𝑓,  sRGB(𝑐)� ,  𝑐,  𝑜�. 

For efficiency, the over compositing operation can assume 
premultiplied alpha, as long as the color-space conversion func-
tions sRGB and sRGB−1 also operate in that space.  Needless to 
say, the process would be much simpler if all operations could be 
performed in a linear color space, as they were meant to be. 
The following section describes how to compute the partial 
coverage opacity 𝑜 by prefiltering the vector graphics. 

4.2 Prefiltering 
Prefiltering eliminates high frequencies from the vector graphics 
before sampling to prevent them from causing aliasing artifacts. 
Given a kernel 𝑘(𝑝) (i.e. a low-pass filter) and an indicator 
function 𝑙(𝑝) for a layer (i.e. 𝑙(𝑝) = 1 inside and 0 outside), the 
partial coverage opacity is given by a screen-space 2D convolu-
tion 𝑜(𝑝) = 𝑘 ∗ 𝑙 =  ∬𝑘(𝑝′ − 𝑝) ∙ 𝑙(𝑝′) 𝑑𝑝′. 
Although exact prefiltering would be too costly to evaluate in 
real-time, we employ a variety of simplifying assumptions that 
make the process practical.  For instance, we prefilter each layer 
independently, which ignores the fact that layer compositing and 
prefiltering do not generally commute, and thus may be incorrect 
when multiple layers partially overlap a pixel. 
Furthermore, within each path, we consider only the closest 
segment to a pixel (which is incorrect when multiple path features 
overlap a pixel).  Then, in the case of filled paths, we locally 
approximate 𝑙 by an infinite half-space (which breaks down near 
sharp angles).  Stroked paths can similarly be approximated by the 

difference between two half-spaces, offset each way by half the 
stroke width.  Since convolution is a linear operation, stroke 
prefiltering also reduces to convolution between a kernel and a 
half-space: 𝑘 ∗ (𝑙+𝑤 − 𝑙−𝑤) = 𝑘 ∗ 𝑙+𝑤 − 𝑘 ∗ 𝑙−𝑤. 
Kernel choice:   If the kernel is radially symmetric, or if the 
kernel is rotationally aligned with the half-space (which does not 
seem to degrade the quality of the results), the convolution can be 
expressed as a function 𝑜(𝑑) of the signed distance 𝑑 between the 
pixel and the half-space [Gupta and Sproull 1981].   
We have experimented with box, parabolic, and 
Gaussian kernels.  Figure 4 shows prefiltered 
renderings of the inset resolution chart.  Since 
the simple box kernel is clearly unsatisfactory, 
our preferred choice is the parabolic kernel 
𝑘𝑝(𝑑) = 4

3
(1 − 𝑑2), 𝑑 ∈ [−1,1], which yields 

𝑜𝑝(𝑑) = 1
2

+ 1
4
 (3𝑑 − 𝑑3) = smoothstep(−1,  1,  𝑑). 

This provides a good tradeoff between quality and simplicity, and 
is equivalent to the transition function intuitively proposed by 
[Qin et al. 2006]. 
Evaluation:   Each filled layer successively updates the pixel 
color 𝑐, by means of the hybrid blending operation defined in 
Section 4.1: 

𝑐 = blend�𝑐,  fillcolor,  𝑜𝑝(𝑑)�. 

Similarly, a stroked layer with half-width 𝑤 updates the pixel 
color 𝑐 according to the rule: 

𝑐 = blend �𝑐,  strokecolor,  𝑜𝑝(|𝑑| + 𝑤) − 𝑜𝑝(|𝑑| −𝑤)�. 

For paths that are both filled and stroked, we perform two succes-
sive blend operations, first with the fill, and next with the stroke. 
For simplicity, we first compute 𝑑′ and 𝑤′ in texture space, then 
map them to screen space.  The sign of 𝑑′, which defines the 
interior of filled primitives, is obtained by shooting a ray from the 
pixel to the right (+𝑥), tracking the number of intersections with 
the path segments [Foley et al. 1990].  For each segment, we 
determine the number ℎ𝑖 of ray intersections and the vector 𝑣𝑖 
from the pixel to the closest point on the segment (see Sec-
tions 4.3 and 4.4).  We combine these as 

𝑣 = arg min𝑣𝑖‖𝑣𝑖‖   and   ℎ = ( ∑ ℎ𝑖𝑖 ) mod 2,  
to obtain 

𝑑′ = −(−1)ℎ ‖𝑣‖. 
Now consider the half-space perpendicular to vector 𝑣.  Using the 
Jacobian 𝐽 of the map from screen to texture coordinates (which 
we obtain directly from the built-in ddx/ddy operations), we can 
transform this half-space to screen coordinates.  There, it lies at a 
distance 𝑑 = 𝑠(𝑣) 𝑑′ from the pixel, with an anisotropic scaling 
factor 

𝑠(𝑣) =
‖𝑣‖
‖ 𝐽𝐽‖ . 

Stroke widths are similarly scaled by 𝑠(𝑣), so that 𝑤 = 𝑠(𝑣) 𝑤′. 

  
  

(a) (b) (c) (d) 
Figure 3: The importance of compositing in the correct color-space.  
(a) Correct, linear coverage computation.  (b) Incorrect thicker results due 
to nonlinear coverage.  (c) Nonlinear intrinsic transparency expected by 
the artist.  (d) Result of linear compositing.  Our hybrid blending operation 
combines (a) and (c) to always produce the correct/expected results. 

    
No prefiltering Box Parabolic Gaussian 

Figure 4: Prefiltering results using different kernels.  The Moiré patterns 
are due to inter-primitive interactions, and are handled by the super-
sampling strategy of Section 4.5. 



 

The example in Figure 5 shows two characters, a filled ‘A’ and a 
stroked ‘B’, rendered at a grazing angle. The difference between 
(a) and (b) shows the importance of anisotropy. The similarity 
between (b) and (c) shows the accuracy of our approximation. 
The overall rendering algorithm can be summarized as follows: 

Initialize the pixel color, e.g. to white or transparent. 
for (each layer) 
 Initialize the pixel winding parity ℎ to 0 and distance vector 𝑣 to ∞. 
 for (each segment in layer) 
  Shoot ray from pixel through segment and update ℎ. 
  Compute distance vector to segment and update 𝑣. 
 Compute texture-space signed distance 𝑑′ from ℎ and 𝑣. 
 Use 𝑣 to obtain screen-space signed distance 𝑑 and stroke width 𝑤. 
 if (fill) Blend fill color with prefiltered opacity. 
 if (stroke) Blend stroke color with prefiltered opacity. 

We now describe the process of obtaining the winding number 
increment ℎ𝑖 and vector distance 𝑣𝑖 for each segment type. 

4.3 Linear segments 
For each linear segment (𝑏𝑖 , 𝑏𝑖+1), the ray intersection count 
ℎ𝑖 ∈ {0,1} and distance vector 𝑣𝑖 are given by (see Figure 6a): 

𝑡𝑖 =
𝑝𝑦 − 𝑏𝑖,𝑦

𝑏𝑖+1,𝑦 − 𝑏𝑖,𝑦
 , 𝑞𝑖 = lerp(𝑏𝑖 , 𝑏𝑖+1, 𝑡𝑖) , 

ℎ𝑖 = �1,  if  0 ≤ 𝑡𝑖 ≤ 1 and 𝑞𝑖,𝑥 > 𝑝𝑥
0,  otherwise ,  

𝑡𝑖′ = clamp �
(𝑝 − 𝑏𝑖) ⋅ (𝑏𝑖+1 − 𝑏𝑖)

(𝑏𝑖+1 − 𝑏𝑖) ⋅ (𝑏𝑖+1 − 𝑏𝑖)
, 0,1�  , 

𝑣𝑖 = 𝑝 − lerp(𝑏𝑖 ,𝑏𝑖+1, 𝑡𝑖′) .  

If the ray passes exactly through a vertex at rendering time, we 
perturb its vertical coordinate imperceptibly for robustness. 

4.4 Quadratic segments 
Each segment (𝑏𝑖−1, 𝑏𝑖 , 𝑏𝑖+1), with 𝑏𝑖 tagged Curvepoint, defines 
a Bézier curve 𝑏(𝑡) = (1 − 𝑡)2𝑏𝑖−1 + 2(1 − 𝑡)𝑡 𝑏𝑖 + 𝑡2𝑏𝑖+1 on 
the interval 0 ≤ 𝑡 ≤ 1.  The intersection count ℎ𝑖 ∈ {0,1,2} and 
vector 𝑣𝑖 are found as follows (see Figure 6b). 
Any intersections of the +𝑥 ray from pixel 𝑝 with the (infinite) 
quadratic curve are found as the roots 𝑡1 and 𝑡2 of the quadratic 
equation 𝑏𝑦(𝑡𝑗) = 𝑝𝑦.  For each root 𝑡𝑗, we increment the ray 
intersection count 𝑤𝑖 if the point 𝑏(𝑡𝑗) lies within the curve 
segment (i.e. 0 ≤ 𝑡𝑗 ≤ 1) and to the right of 𝑝 (i.e. 𝑏𝑥(𝑡𝑗) > 𝑝𝑥). 
The quadratic equation 𝑏𝑦(𝑡) = 𝑝𝑦 becomes linear if the parabola 
axis is horizontal, i.e. 𝑏𝑖,𝑦 = 1

2
�𝑏𝑖−1,𝑦 + 𝑏𝑖+1,𝑦�.  To avoid having 

to test this condition at runtime, we imperceptibly perturb the 
point 𝑏𝑖 by one bit during encoding. 

Computing the distance to the quadratic Bézier curve involves 
finding the roots of a cubic polynomial.  Analytic roots require 
transcendental functions and are thus expensive to evaluate [Blinn 
2006].  Iterative solvers [Qin et al. 2008] can be a faster alterna-
tive within the radius of curvature of the curve. 
Instead, like Loop and Blinn [2005], we develop a fast approxi-
mate technique based on implicitization.  But whereas their 
triangle-bounded rasterization approach only needs distance to an 
infinite curve, we require distance to a curve segment, i.e. taking 
the endpoints into account. 
At rendering time, we convert the Bézier curve to its implicit 
quadratic representation 𝑓(𝑝) = 0, given by the Bezout form of 
its resultant [Goldman et al. 1984]: 

𝑓(𝑝) = 𝛽(𝑝) 𝛿(𝑝) − 𝛼2(𝑝),  with 
𝛽(𝑝) = 2 Det(𝑝, 𝑏𝑖 , 𝑏𝑖−1),  𝛿(𝑝) = 2 Det(𝑝, 𝑏𝑖+1, 𝑏𝑖), 

𝛼(𝑝) = Det(𝑝, 𝑏𝑖−1, 𝑏𝑖+1), and Det(𝑝, 𝑞, 𝑟) = �𝑝 𝑞 𝑟
1 1 1� . 

The zero set of the first-order Taylor expansion of 𝑓 centered at 𝑝 
defines a line, and the closest point 𝑝′ to 𝑝 on this line is given by 

𝑝′ = 𝑝 −
𝑓(𝑝) ∇𝑓(𝑝)
‖∇𝑓(𝑝)‖2  . 

For 𝑝′ exactly on the curve, we can find the parameter 𝑡′such that 
𝑏(𝑡′) = 𝑝′ by inversion.  In the quadratic Bézier case, Goldman et 
al. [1984] show that inversion can be obtained by 

𝑡′ =
𝑢𝑗′

1 + 𝑢𝑗′
 ,     with either  𝑢1′ =

𝛽(𝑝′)
𝛼(𝑝′)   or  𝑢2′ =

𝛼(𝑝′)
𝛿(𝑝′) . 

In fact, if 𝑝′ lies on the curve, the resultant vanishes, and 𝑢1′ = 𝑢2′ .  
Since this is generally not the case, the two values differ, and we 
must rely on an approximation.  Our contribution is the choice 

𝑢� =
𝛼(𝑝′) + 𝛽(𝑝′)
𝛼(𝑝′) + 𝛿(𝑝′) 

which gives 

𝑡̅ =
𝛼(𝑝′) + 𝛽(𝑝′)

2𝛼(𝑝′) + 𝛽(𝑝′) + 𝛿(𝑝′) . 

Notice that 𝑡̅ is exact whenever 𝑝′ is on the curve. The biggest 
advantage of 𝑡̅, however, is that it is continuous, even when 𝑝′ 
coincides with one of the control points, where either 𝑢1′  or 𝑢2′  
becomes undefined.  The denominator of 𝑡̅ is zero only if 𝑏0, 𝑏1, 
and 𝑏2 are collinear, in which case we would have converted the 
primitive to a linear segment.  The same holds for ‖∇𝑓(𝑝)‖. 
From 𝑡̅, we then obtain the distance vector as 

𝑣𝑖 = 𝑝 − 𝑏�clamp(𝑡̅, 0,1)� . 
Note that implementation of these formulas is simpler if the 
Bézier points 𝑏 are translated so as to place 𝑝 (and later 𝑝′) at the 
origin.  The HLSL source code shown below compiles to just 32 
assembly instructions, contains only two division instructions and 
no transcendental functions, square roots, loops, or branching. 

 
(a)  Isotropic filtering for comparison. 

 
(b) Prefiltering of Section 4.2, using a parabolic filter. 

 
(c) Supersampling of Section 4.5, 𝑘 = 400 (no prefiltering). 

Figure 5: Anisotropic antialiasing of filled and stroked primitives. 
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Figure 6: Ray intersection testing and distance computation, for (a) linear 
and (b) quadratic path segments. 



 

inline float det(float2 a, float2 b) { return a.x*b.y-b.x*a.y; } 
// Find vector 𝑣𝑖 given pixel 𝑝=(0,0) and Bézier points 𝑏0,𝑏1,𝑏2. 
float2 get_distance_vector(float2 b0, float2 b1, float2 b2) { 
 float a=det(b0,b2), b=2*det(b1,b0), d=2*det(b2,b1);  // 𝛼,𝛽,𝛿(𝑝) 
 float f=b*d-a*a; // 𝑓(𝑝) 
 float d21=b2-b1, d10=b1-b0, d20=b2-b0; 
 float2 gf=2*(b*d21+d*d10+a*d20); 
 gf=float2(gf.y,-gf.x); // ∇𝑓(𝑝) 
 float2 pp=-f*gf/dot(gf,gf); // 𝑝′ 
 float2 d0p=b0-pp; // 𝑝′ to origin 
 float ap=det(d0p,d20), bp=2*det(d10,d0p); // 𝛼,𝛽(𝑝′) 
 // (note that 2*ap+bp+dp=2*a+b+d=4*area(b0,b1,b2)) 
 float t=clamp((ap+bp)/(2*a+b+d), 0,1); // 𝑡̅ 
 return lerp(lerp(b0,b1,t),lerp(b1,b2,t),t); // 𝑣𝑖 = 𝑏(𝑡̅) 
} 

We have found that this approximate distance is sufficiently 
accurate for the purpose of prefiltering and thin-stroke rendering, 
as visually demonstrated in Figure 7.  Note the correct behavior at 
the endpoints, and the high precision in the neighborhood of the 
curve, where it is most relevant for prefiltering.  Wide stroke 
paths whose outlines are poorly approximated are pre-converted 
to filled primitives.  It would be desirable to characterize the 
maximum error analytically, but unfortunately this seems hard. 

4.5 Supersampling 
The prefiltering strategy described in Section 4.2 relies on simpli-
fying assumptions that break down when many primitives overlap 
a pixel.  One possible high-quality approximation in traditional 
rasterization is the A-buffer [Carpenter 1984], which maintains 
per-pixel lists of fragments, with each fragment containing a 
subpixel bitmask.  However, this approach is challenging to 
implement efficiently in hardware [Winner et al. 1997]. 
Because cells store the full list of relevant vector primitives (on 
the current surface), we can evaluate and combine colors at 
multiple subpixel samples, without any added bandwidth. 
The first step is to determine the footprint of the pixel in texture 
space, just as in anisotropic texture filtering [Heckbert 1989].  
This footprint could overlap several cells, which would require 
parsing of multiple cell streams.  Fortunately, use of extended 
cells (Section 5.1) provides a margin so we need only consider the 
current cell.  When a pixel footprint grows larger than the overlap 
region, we transition to conventional anisotropic mipmapping. 
Our system evaluates a set of 𝑘 weighted samples within a paral-
lelogram footprint as shown in Figure 8.  More precisely, given a 
sampling pattern defined by local displacements 𝑢𝑗  and weights 
𝑎𝑗 , the final pixel color is computed as the weighted sum ∑ 𝑎𝑗 𝑐𝑗𝑗  
where 𝑐𝑗 is the sample color evaluated at displaced position 
𝑝𝑗 = 𝑝 + 𝐽𝑢𝑗 .  We use sampling patterns P(1,4,2) or P(1,4,4) from 
[Laine and Aila 2006], corresponding to 𝑘=4 or 8.  Because the 
footprints overlap in screen space, it would be ideal if samples 
could be shared among adjacent pixels, as suggested by Laine and 

Aila [2006].  Unfortunately current hardware does not permit this, 
but perhaps this will be possible in the future. 
We traverse the cell stream just once, updating all samples 𝑐𝑗 as 
each primitive is decoded.  This requires allocating a few tempo-
rary registers per sample (accumulated color 𝑐, accumulated 
winding parity ℎ, and shortest distance vector 𝑣).  For each 
subpixel sample, we still evaluate the prefilter antialiasing of 
Section 4.2, but with a modified Jacobian matrix 𝐽′ = �𝑠/𝑘    𝐽 
where 𝑠 is the kernel support area in pixels, to account for the 
changed inter-sample spacing. 
The number 𝑘 of samples is adaptively selected based on the cell 
complexity.  In our current system, we use the simple approach of 
overriding 𝑘 to equal 1 in cells containing a single graphics layer 
with uniform color.  An alternative would be to let the cell encod-
ing explicitly specify the desired supersampling complexity. 
Figure 9 compares the rendering quality with different antialiasing 
settings.  Although the computation has a cost that scales as 𝑂(𝑘),  
it is performed entirely on local data, and is therefore amenable to 
additional parallelism in future GPUs.  For ground-truth, we use 
𝑘=400 samples, weighted according to the (13,

1
3) kernel of Mitchell 

and Netravali [1988].  Notice how results are close to ground-
truth with just 8 samples/pixel, but only if prefiltering is enabled. 
The overall rendering algorithm with supersample antialiasing can 
be summarized as follows: 

for (each sample) 
 Initialize the sample color, e.g. to white or transparent. 
for (each layer) 
 for (each sample 𝑖) 
  Initialize the sample winding parity ℎ𝑗 to 0. 
  Initialize the sample distance vector 𝑣𝑗 to ∞. 
 for (each segment in layer) 
  for (each sample 𝑖) 
   Shoot ray from sample through segment, and update ℎ𝑗. 
   Compute absolute distance to segment, and update 𝑣𝑗. 
 for (each sample 𝑖) 
  Use 𝑣𝑖 to obtain screen space distance 𝑑𝑗 and stroke width 𝑤𝑗. 
  if (fill) Blend fill color over sample with prefilter opacity. 
  if (stroke) Blend stroke color over sample with prefilter opacity.  
Compute the weighted sum of sample colors to obtain the pixel color. 

 
Figure 7: (a) Exact distance to a quadratic curve involves cubic polynomi-
al roots.  (b) A first-order implicit approximation [Loop and Blinn 2005] 
does not capture the segment endpoints.  (c) Our inversion-based approx-
imation is fast, and visual analysis reveals that it is sufficiently accurate in 
the vicinity of the curve. 
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Figure 8: Supersample antialiasing evaluates color at multiple samples 
(shown in green) during a single shader evaluation. 
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Figure 9: Use of supersampling to resolve interactions between multiple 
primitives per pixel, with and without the prefiltering of Section 4.2. 
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5. Conversion to specialized cells 
We now describe our method for converting vector graphics to a 
cell-specialized description, to enable compact storage and effi-
cient runtime evaluation.  Because the conversion algorithm is 
very fast, it may also prove useful for software rasterization, 
especially on many-core processors. 

5.1 Extended cells 
First, we must identify the set of primitives that could contribute 
to the rendering of any pixel falling within a given cell.  Obvious-
ly, any filled path must be included if its interior overlaps the cell.  
Stroked paths must be included if the path outline (offset either 
way by half the stroke width) overlaps the cell. 
Furthermore, when either prefiltering or supersampling is enabled, 
a primitive must also be represented in a cell if its convolution 
with the associated kernel overlaps the cell, i.e., the minimum 
screen-space distance between the primitive and the cell is less 
than the finite kernel support (see Section 4.2 and 4.5).  This 
screen-space distance may vary at runtime.  As the cells shrink to 
the size of a screen pixel, the width of the kernel may become as 
large as an entire cell.  At extreme minification, several cells map 
into individual pixels, so antialiasing breaks down, and one must 
instead transition to a conventional raster mipmap pyramid. 
To allow satisfactory antialiasing up to a reasonable minification 
level (where we transition to a mipmap), we find the primitives 
that overlap an extended cell as illustrated in Figure 10.  Growing 
this extended cell allows a coarser mipmap pyramid, but increases 
the length of the cell streams since more primitives lie in the 
extended cell.  We have found that a good tradeoff is to set the 
overlap band to be 10-20% of the cell size. 

5.2 Cell-based specialization 
Although specializing stroked paths to an extended cell is trivial, 
dealing with filled primitives requires some form of polygon 
clipping. Of course, independently clipping each filled input path 
against each extended cell in an entire lattice would be prohibi-
tively inefficient.  The time required (say, by using an extension 
of [Sutherland-Hodgman 1974] to piecewise quadratic segments)  
would be proportional to 𝑂(𝑛 𝑟2), where 𝑛 is the number of input 
vertices and 𝑟2 is the number of grid cells.  To accelerate the 
process, we could perhaps use recursive subdivision over a quad-
tree of cells, in line with what is described by [Warnock 1969].  
This strategy could reduce the time complexity to 𝑂(𝑛 log 𝑟 + 𝑎), 
where 𝑎 is the output size. 
Fortunately, we can do even better than that.  Our lattice-clipping 
algorithm streams over the primitives just once, and directly clips 
each filled path against every cell that overlaps it.  The resulting 
time complexity is only 𝑂(𝑛 + 𝑟 + 𝑎), and the simplicity of the 
algorithm contributes to its speed in practice. 
To achieve a more compact representation, we exploit knowledge 
of our particular rendering algorithm.  Specifically, since render-
ing is based on shooting rays in the +𝑥 direction, we can safely 
omit segments that lie above, to the left, or below each extended 
cell, as they never take part in the winding number computation. 

5.3 Fast lattice-clipping algorithm 
Figure 11 shows an example of the desired output.  The main 
difficulty is the introduction of auxiliary segments on the right 
boundary of each extended cell (shown in red), so that rays cast in 
the +𝑥 direction encounter the correct number of intersections.  In 
the top row of the example, these auxiliary segments are connect-
ed to the bottom of the cell.  However, in the bottom row they are 
connected to the top.  Unfortunately, there is no local decision 
procedure for determining which is the case at hand.  Notice that, 
compared to a downward auxiliary segment, an upward auxiliary 
segment uniformly increments the winding number within the 
cell.  The trick is therefore to make a consistent, arbitrary deci-
sion, and correct it afterwards. 
To that end, we always extend the path segments crossing the 
right boundary of a cell to the top right corner of the cell.  Figure 
12 shows this intermediary representation (notice the green 
arrows).  Whenever a path segment crosses the bottom of a cell, 
we know that every cell to its left will make a mistake.  We 
therefore record into the cell a change Δℎ in winding number, to 
affect all cells to the left in that row (+1 for upward segment and 
−1 for downward segment).  Once all segments have been pro-
cessed, we efficiently traverse each row right-to-left, integrating 
the winding number changes.  For each cell with a resulting 
nonzero winding increment, we add an appropriate number of 
upward or downward auxiliary segments, spanning the entire row 
(see the red arrows in the figure).  The resulting green and red 
edges are finally merged together to produce a result equivalent to 
that of Figure 11. 
For completeness we provide here a more detailed algorithm: 

for (each segment in a layer)  
 Enter the segment into the lattice cell(s) that it overlaps, 
  clipping it to the cell boundaries. 
 if the segment leaves a cell through its right boundary, 
  add a segment from the intersection to the top right corner.  
 if the segment enters a cell through its right boundary, 
  add a segment from the top right corner to the intersection. 
 if the segment enters a cell through its lower boundary, 
  increment Δℎ𝑐 on the cell. 
 if the segment leaves a through its lower boundary, 
  decrement Δℎ𝑐 on the cell. 
Sort all modified Δℎ𝑐 (merge rows, bucket sort columns, split rows) 
for (each row of modified cells) 
 Initialize the winding number ℎ = 0 (associated with the row). 
 for (each span of cells in right-to-left order) { 
  Add |h| vertical segments on the right boundary of the cell, 
   pointing up if ℎ > 0, or down otherwise. 
  Merge the cell segments if possible. 
  Update the winding number as the running sum ℎ = ℎ + Δℎ𝑐. 
Clear only the modified Δℎ𝑐 (i.e., using linked lists) 

               

  

Extended cell includes 
overlap region 

~10-20%  
Figure 10: For correct antialiasing, each cell stores all primitives that 
affect an extended cell region. 

  
Figure 11: For a filled shape, polygon clipping to each extended cell 
gives the paths on the right; the dashed segments have no effect on our 
winding rule computation and are therefore ignored, whereas the red 
segments must be included. 



 

Overall the algorithm is extremely fast, processing even our most 
complicated example (~100K segments) in less than a second (see 
Table 3).  For the case of the even-odd fill rule, the algorithm can 
be simplified further to preserve just the parity of the winding 
number.  Figure 13 shows an example with an intricate self-
intersecting shape. On the right, the figure shows the resulting 
intermediary and final specialized encodings for selected cells. 
As a final step, we convert all points to a [0 … 1]2 coordinate 
system over the extended cell.  In the rare case that a middle 
Curvepoint Bézier control point lies outside the extended cell, we 
recursively subdivide the curve into smaller Bézier segments. 

5.4 Occlusion optimization 
When the vector graphics is specialized to a cell, it is possible for 
the shape within one layer to become completely occluded by one 
or more layers in front of it.  In traditional rendering this would 
cause overdraw.  Now we have the opportunity to locally remove 
the occluded layer.  One could use general polygon-polygon 
clipping [Greiner and Hormann 1998] to check if any layer is 
fully occluded by the union of the layers in front of it.  In our 
current system, we simply check if any opaque, filled layer fully 
occludes the cell, and if so remove all layers behind it.  As an 
example, for the Tiger model in Figure 19, the average cell stream 
length is reduced from 9.5 to 7.0 words. 

6. Implementation details 
Our system uses the Microsoft DirectX 10 API to benefit from 
linear memory buffers.  (An earlier implementation using Di-
rectX 9 was slightly more complicated [Nehab and Hoppe 2007].) 
Storage of nonuniform cells:  Cell streams are variable-length, 
so we need a data structure to pack them in memory.  Note that 
the cell streams are self-terminating, so it is unnecessary to store 
their lengths explicitly.  We simply concatenate all streams in 
raster-scan order into a linear memory buffer (Figure 14), letting a 
2D indirection table contain pointers to the start of each cell 
stream.  Naturally, we coalesce identical streams to allow for 
sharing between cells.  Although our implementation employs a 
flat indirection structure, it would be easy to replace it with a 
variable-rate perfect spatial hash [Nehab and Hoppe 2007] or 
other space-efficient data structure [Lefohn et al. 2006]. 
Cell stream encoding:  Our streams follow a simple grammar 
that closely resembles a sequence of instructions (Figure 2b).  
Each layer starts with a 32-bit RGBA layer header.  We reserve 
one bit of each channel to define 4 flags: Last, Stroke, Fill, and 
Gradient.  For stroked paths, the stroke width is stored in the alpha 
channel.  The same layer path can be both stroked and filled in the 
common case that its stroke color is black and fill color is opaque. 

Gradient fills can be used to map 2D global coordinates to colors.  
This mapping consists of four stages: (1) an affine mapping 𝑀 
from 2D lattice coordinates to 2D gradient space, (2) a linear or 
radial mapping from 2D gradient space to a parameter 𝑡′ ∈ ℝ, 
(3) a wrapping function from 𝑡′ to 𝑡 ∈ [0,1], (4) and a piecewise-
linear color ramp function 𝐶 sampled at 𝑡. 

We encode these gradient mappings as follows.  We store an 
approximation of each color ramp function 𝐶 as a rasterized 1D 
texture, and concatenate these into a single 1D texture. 

To evaluate the gradient color for a layer, we first obtain the point 
𝑝𝑔 = 𝑀 𝑝 in gradient space.  Then, for linear gradients, 𝑡′ is 
simply given by the 𝑥-coordinate of 𝑝𝑔 (Figure 15 left).  Radial 
gradients are parameterized by a scalar 𝑐𝑥 that defines the center 
(𝑐𝑥, 0) of a unit circle in gradient space.  The value 𝑡′ is then 
given by the ratio �𝑝𝑔�/‖𝑞‖, where point 𝑞 is the intersection of 
the ray �0,𝑝𝑔� with the unit circle (Figure 15 right).  Thus, a 
radial gradient descriptor requires the full 2×3-matrix 𝑀 plus the 
value 𝑐𝑥 (7 floats); a linear gradient requires only the first row of 
𝑀 (3 floats).  We pack these coefficients into 4-vectors, using the 
leftover element to store an offset into the concatenated ramp 
texture.  We store these in a linear buffer of gradient descriptors. 

If the Gradient flag of a layer header is set, we use the color 
channels to encode an index into the gradient descriptor buffer, 
and a scaling factor used in accessing the gradient ramp texture.  
The type of gradient (linear or radial) and the wrapping function 
for 𝑡′ → 𝑡 (clamp, reflect, or repeat) are encoded by three bits in 
the layer header. 

Each layer header is followed by a stream of cell-local coordi-
nates (𝑥,𝑦), quantized to 16 bits.  We reserve one bit of each 
coordinate to encode the 4 tags: Moveto, Drawto, Curvepoint, and 
Last.  As an optimization, we assume that each layer is implicitly 
prefixed by a Moveto instruction to the lower-right of the cell, as 
this helps remove a point in many cases (e.g. all 6 cells with red 
segments in Figure 11).  Table 1 shows the storage size of differ-
ent path configurations per layer. 
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Figure 12: To recover correct winding numbers within the cells, our fast 
algorithm inserts auxiliary segments (green) on right boundaries, and 
makes a right-to-left sum of bottom-boundary intersections to appropriate-
ly insert right-boundary edges (red).  After some local simplification, the 
result is equivalent to that in Figure 11. 

 

  

  

  
Figure 13: Demonstration of our fast cell-specialization algorithm on a 
complex shape with self-intersections.  
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Figure 14: We pack the variable-length cell streams into a 1D memory 
buffer using a 2D indirection table. 



 

Cell contents Length  
Constant color   1* 

1 linear segment 3 
2 linear segments 4-5 
3 linear segments 5-7 

1 quadratic segment 4 
2 quadratic segments 6-7 
3 quadratic segments 8-10 

Table 1: Number of 32-bit words required per cell layer as a function of 
path complexity.  Ranges depend on whether Moveto points are needed. 
*Likely shared by many cells. 

Cell stream parsing:  Within the pixel shader, we interpret the 
cell stream and evaluate the rendering algorithm of Section 5.  
This interpretation involves a set of nested loops: over layers, 
control points, and supersample locations.  The resulting pixel 
shader program complexities for various graphics types are 
summarized in Table 2. 

7. Results and discussion 
All results are obtained using an NVIDIA GeForce 8800 GTX, in 
a 7202 window.  The examples in this section use an overlap 
region of size 10-20% (depending on the maximum stroke width). 
Timing analysis:  As far as preprocessing is concerned, the  
construction method of Section 5.3 takes less than a second to 
encode even our most complex examples (see Table 3).  Although 
this was not our goal, simple animated textures (i.e., few thousand 
animated vertices, or restricted to particular layers) should be 
possible.  By spreading the encoding across multiple CPU cores, 
it should be possible to support even complex animated textures. 
Figure 16 plots the rendering rate from cell streams as a function 
of lattice resolution, for the Tiger in Figure 19.  At coarse lattice 
resolutions, the larger cells increase the number of primitives per 
cell, which in turn increases the per-pixel rendering cost and 
therefore lead to slower rendering rates.  Conversely, at very fine 
lattice resolutions, the majority of cells contain a uniform (solid or 
gradient) color, so rendering speed reaches a plateau. 
Our evaluation algorithm should not be memory-bound because 
the same cell data is reused by many nearby pixels.  Indeed, we 
have run some tests where we let each pixel parse its cell stream 
without performing rendering computations, and the frame rates 
increased by a factor of 3–4. This indicates that we are presently 
compute-bound, and performance will benefit greatly from addi-
tional computational cores in future hardware. 
The pixel shader makes several coarse-grain branching decisions, 
based on the number and types of primitives in the cell stream.  
Fortunately, these decisions are identical for nearby pixels access-
ing the same stream, which occurs if pixels lie in the same lattice 
cell, or if adjacent cells share the same cell stream (e.g., in areas 
of constant color), so the SIMD branching penalty is reduced. 
Space analysis: Table 3 shows the size of the stream buffers for 
each of our examples.  Under reasonable lattice resolution set-

tings, the cell specialized representation is comparable in size to 
the input textual vector graphics description.  Naturally, as shown 
in Figure 16, the stream buffer size grows linearly with the lattice 
resolution.  This was expected due to increased sharing of con-
stant color cells at higher resolutions (i.e., only boundaries need 
be encoded individually).  In contrast, the memory requirements 
of the indirection table grow quadratically with the lattice resolu-
tion (just like a regular image).  Fortunately, if  memory is at a 
premium and the lattice resolution is very high, this problem 
could be eliminated by replacing the currently flat indirection 
structure with a hierarchical data structure, such as a quadtree. 
We manually selected lattice resolutions.  Table 3 shows the 
chosen values for each dataset.  Note that the memory sizes are on 
the same order as a typical image representation (but of course 
cell-specialized graphics allow resolution-independent rendering). 
Figure 17 shows a histogram of cell stream lengths for the Lion 
example.  The most common type of cell is one containing a 
single word indicating a constant color.  Figure 18 visualizes the 
varying length of the cell streams for another encoded illustration. 
Examples:  Figure 19 presents a collection of vector graphics 
examples of various types, and Table 3 reports on their complexi-
ties, sizes, and rendering rates.  Our representation is trivial to 
map onto surfaces as demonstrated in Figure 1, or to deform by 
arbitrary parametric warps, as shown in Figure 20. 

Dataset Input 
vertices 

Encoding 
time 
(s) 

 Cell-specialized representation  
Rendering 

(fps)  
Size 
(KB) 

Lattice 
resolution 

Stream 
length 

 

 Avg. Max.  𝑘=1 𝑘=8 
Glass 390 0.02  20 24×32 6.3 69  238.2 44.3 
Logo 498 0.01  16 32×19 5.1 39  381.4 70.5 
Dice 942 0.02  20 32×20 7.3 85  271.2 42.4 
Eyes 1061 0.05  44 64×41 4.3 58  285.9 54.9 
Penguin 1760 0.05  36 64×58 2.6 92  294.9 53.7 
Lion 2078 0.06  48 21×32 17.4 80  212.4 30.8 
Scorpion 2129 0.06  80 63×64 5.0 92  193.1 31.1 
Dragonfly 2696 0.14  128 128×128 2.9 96  214.9 43.0 
Dancer 2935 0.10  80 35×64 9.1 71  217.4 35.4 
Skater 4122 0.07  64 30×48 11.1 132  176.6 26.8 
Drops 5716 0.27  344 115×128 6.6 110  141.8 23.7 
Butterfly 5836 0.08  92 64×41 8.8 91  194.0 31.0 
Desktop 8687 0.11  132 64×41 13.7 280  113.4 16.8 
Reschart 9445 0.23  212 128×79 6.3 132  232.7 37.1 
Hygieia 9922 0.10  128 28×64 18.0 107  162.4 23.2 
Tiger 16315 0.44  428 125×128 7.0 134  123.5 17.5 
Embrace 18761 1.02  792 240×256 4.5 165  129.7 22.8 
CAD 22393 0.30  360 128×100 7.5 172  140.0 24.0 
Denmark 101386 0.59  912 128×99 19.2 286  58.2 7.9 
Boston 108719 0.91  1132 200×180 8.8 351  63.2 8.4 
Table 3: Quantitative results, including input vertices, construction times, 
cell stream statistics, and rendering rates without/with supersampling.  
Stream lengths are in 32-bit words. 

 
Figure 15: Evaluation of linear and radial color gradients. 

Vector primitive types No prefilter Prefilter Prefilter + 
supersampling 

Linear paths, no strokes  117 145 205 
Linear paths, with strokes 152 167 230 

Quadratic paths, no strokes 160 221 301 
Quadratic, with strokes 228 243 327 

+ Gradients 310 325 418 
Table 2: Pixel shader instruction counts (including loops). 
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8. Summary and future work 
Cell streams are constructed by spatially specializing a vector 
graphics description to the cells of a lattice using a fast algorithm.  
These streams allow efficient random-access evaluation of com-
posited layers of filled and stroked shapes, complete with 
transparency, color gradients, and high-quality antialiasing. 
Avenues for future work include: 
• Extension of cell streams to allow more rendering attributes 

(e.g. blurs or vector graphics instancing).  Streams could gener-
alize to full programs, including subroutines and recursion; 

• Improvements to the adaptivity of the supersampling algorithm; 
• Parallelized implementation of the encoding stage, enabling 

real-time animations, perhaps even a GPU implementation; 
• Generalization of the concept of cell-based specialization to 

other applications besides vector graphics. 
 

 
Figure 16: Memory usage and rendering rate as a function of lattice 
resolution for the Tiger in Figure 19.   

 
Figure 17: Histogram of cell stream lengths for the Lion in Figure 1. 
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Close-up of lattice Cell stream lengths 

(darker is longer) 
Figure 18: Visualization of the varying length of cell streams. 
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Figure 20: Parametric warps.  By perturbing the texture coordinates prior 
to rendering, we can produce distortion effects  that are gaining popularity 
in modern user interfaces, while retaining the crispness and resolution-
independence of the vector graphics description. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19: Example rendering results.  On the left, prefilter antialiased results. 
The close-ups on the right show (a) high-resolution renderings overlaid with 
the lattice grid, (b) non-antialiased, (c) prefiltering only, and (d) prefiltering 
with 𝑘=8 supersampling. 

(Already close-up) 

(a) (b) 

(d) (c) 


	1. Introduction
	2. Related work
	3. Our vector graphics representation
	4. Rendering
	4.1 Compositing
	4.2 Prefiltering
	4.3 Linear segments
	4.4 Quadratic segments
	4.5 Supersampling

	5. Conversion to specialized cells
	5.1 Extended cells
	5.2 Cell-based specialization
	5.3 Fast lattice-clipping algorithm
	5.4 Occlusion optimization

	6. Implementation details
	7. Results and discussion
	8. Summary and future work
	Acknowledgments
	References

