

Random-Access Rendering of General Vector Graphics
Diego Nehab Hugues Hoppe

Microsoft Research

Figure 1: Given a vector graphics drawing, we locally specialize its description to each cell of a lattice, and apply both prefiltering and spatially adaptive
supersampling to produce high-quality antialiased renderings over arbitrary surfaces on the GPU.

Abstract
We introduce a novel representation for random-access rendering
of antialiased vector graphics on the GPU, along with efficient
encoding and rendering algorithms. The representation supports a
broad class of vector primitives, including multiple layers of
semitransparent filled and stroked shapes, with quadratic outlines
and color gradients. Our approach is to create a coarse lattice in
which each cell contains a variable-length encoding of the
graphics primitives it overlaps. These cell-specialized encodings
are interpreted at runtime within a pixel shader. Advantages
include localized memory access and the ability to map vector
graphics onto arbitrary surfaces, or under arbitrary deformations.
Most importantly, we perform both prefiltering and supersampling
within a single pixel shader invocation, achieving inter-primitive
antialiasing at no added memory bandwidth cost. We present an
efficient encoding algorithm, and demonstrate high-quality real-
time rendering of complex, real-world examples.

1. Introduction
Vector graphics are commonly used to represent symbolic infor-
mation such as text, maps, diagrams, and illustrations. Because
finding the color of an individual pixel within a vector graphics
object requires traversing all its primitives, the object is usually
rendered atomically into a framebuffer.
In contrast, raster images offer efficient random-access evaluation
at any point by filtering of a local pixel neighborhood. Such
random access allows images to be texture-mapped onto arbitrary
surfaces, and permits efficient magnification and minification.
However, images do not accurately represent sharp color discon-
tinuities: as one zooms in on a discontinuity, image magnification
reveals a blurred or jagged boundary.
As reviewed in Section 2, recent vector texture schemes explore
encoding vector primitives within a raster structure, for instance

to support discontinuities in images, or to encode glyph regions.
Our aim is to directly model general vector graphics, composed of
multiple semitransparent layers of overlapping gradient-filled and
outlined primitives, including thin strokes that would be difficult
to antialias properly when represented as filled primitives.
Approach: Like [Ramanarayanan et al. 2004], we construct a
lattice in which each cell contains a local graphics description
specialized to that cell region. We store this local description as a
variable-length stream that is parsed within a programmable pixel
shader at rendering time. The complexity of each cell stream is
directly related to the number of vector primitives overlapping the
cell, and thus complexity can be arbitrary and is only introduced
where needed. Moreover, processing time in the pixel shader also
adapts to this complexity (subject to local SIMD parallelism), so
that large areas of continuous color are rendered quickly.
We show that traditional vector graphics can be quickly converted
into cell-specialized streams using a novel lattice-clipping algo-
rithm that is simpler and asymptotically faster than hierarchical
clipping schemes. A unique aspect of the algorithm is that it
requires a single traversal of the input graphics primitives.
Benefits: Cell-specialized streams nicely encapsulate the data
involved in rendering a region of the domain. Conventional
vector graphics rasterization would traverse all input primitives
and perform row-by-row updates to the output raster. Instead, we
read a small subset of specialized primitives (which gets cached
across nearby pixels), combine the primitives within the shader
(albeit with significant computation), and directly obtain the color
of any individual pixel. Such low-bandwidth localized memory
access on both input and output should become increasingly
advantageous in many-core architectures.
Another benefit is antialiasing. Because cell streams provide a
(conservative) list of all primitives overlapping a pixel, we can
evaluate an antialiased pixel color in a single rendering pass,
without resorting to A-buffer fragment lists [Carpenter 1984].
Our scheme combines the power of two antialiasing techniques:
(1) approximate prefiltering within each vector primitive, and
(2) supersampling across primitives. Although supersampling
adds computational cost, it involves no extra memory access.
Moreover, we show that it is easy to spatially adapt the super-
sampling density to local graphics complexity, e.g. falling back to
a single sample per pixel in regions of continuous color. Such
sampling adaptivity has only recently been explored in real-time
rendering applications [Persson 2007].

Our cell-specialized graphics inherit advantages already shown in
vector texture schemes. Shape primitives can be encoded using
lower-precision (e.g. 8- or 16-bit) cell-local coordinates. Also,
since the vector graphics can be evaluated entirely in a shader,
they can be mapped onto general surfaces just like texture images.
Contributions:
• Variable-length cell streams for locally specialized encoding of

general vector graphics including multiple layers and strokes;
• Efficient construction from a vector graphics input, using a

novel and efficient lattice-clipping algorithm;
• Concept of overlapping extended cells for correct prefiltering;
• Fast computation of approximate distance to a quadratic curve;
• Fast anisotropic prefiltering approximation of thin strokes;
• Low-bandwidth high-quality antialiasing by combining prefil-

tering and supersampling in a single pass;
• Random-access vector graphics with linear and radial gradients.

Limitations:
• Rendering from cell-specialized representations assumes a static

layout of graphics primitives in the domain, so animations
would require re-encoding dynamic shapes at each frame
(which fortunately is very fast);

• The description of each vector path segment is replicated in all
cells over which it overlaps, but there is little effective storage
overhead because segments typically have small footprint;

• All cells in the interior of a filled shape must include the shape
color, just as in an ordinary image; on the other hand, there is no
need to store a tessellation of the shape;

• The current implementation does not support all vector graphics
attributes, such as stylized strokes or image-space blur filters,
but these can be implemented as pre- or post-processing;

• Filtered minification requires fallback to a mipmap image
pyramid, but this is true of all other approaches;

• Because the cell descriptions have variable lengths, we must use
an indirection scheme to compact the data.

2. Related work
Several schemes incorporate sharp outlines in a raster texture by
encoding extra information within its pixels. Prior GPU schemes
limit the complexity of the outline within each image cell, such as
a few line segments [Sen et al. 2003, 2004; Tumblin and
Choudhury 2004; Lefebvre and Hoppe 2006], an implicit bilinear
curve [Tarini and Cignoni 2005; Loviscach 2005], a parametric
cubic curve [Ray et al. 2005], two quadratic segments [Parilov
and Zorin 2008], or a fixed number of corner features [Qin et al.
2006]. A drawback of fixed-complexity cells is that small areas of
high detail (e.g. cities on maps, or font serifs) require fine lattices,
which globally increases storage cost. A quadtree structure
provides adaptivity [Frisken et al. 2000], but still limits the num-
ber of primitives at the leaf nodes. Our variable-length cell
representation allows for graphics of arbitrary complexity.
Most prior schemes consider a single layer of non-overlapping
vector graphics. An extension explored by Ray et al. [2005] is to
create a specialized shader that implements a fixed compositing
hierarchy of several vector textures. However, such hierarchies
may become impractical as the input complexity increases.
Moreover, the high evaluation cost is uniform over all pixels. In
essence, our scheme adaptively simplifies this hierarchy per cell.
The feature-based textures of Ramanarayanan et al. [2004] allow
each image texel to contain an arbitrary set of regions used to
override smooth interpolation. Their approach should be imple-

mentable on present GPUs, given a scheme to pack the variable-
length texel descriptions. Whereas their strategy is to add discon-
tinuities to raster images, ours is to directly render general vector
graphics. This requires high-quality prefiltering (especially of
thin strokes) and correct blending of transparent gradients, neither
of which seems feasible with a region-based decomposition. Our
strategy of maintaining a layered description and representing
paths explicitly was guided by these requirements.
Like [Frisken et al. 2000; Loop and Blinn 2005; Ray et al. 2005],
we use approximate distances to primitives for screen-space
prefiltering. Qin et al. [2008] present an iterative method for
computing precise distances to curved segments within their
radius of curvature. We instead present a formula for approximate
distance to quadratic segments that is spatially continuous and
faster to evaluate.
The recent work of Qin et al. [2008] builds on some of the ideas
presented in a previous version of this paper [Nehab and Hoppe
2007]. In particular, Qin et al. also consider general vector
graphics defined as layers of filled and stroked primitives, use
extended cells for correct prefilter antialiasing, and render thin
curved strokes using a distance function. Whereas they use
corners to attempt to infer the sign of the distance from the nearest
feature (which can lead to artifacts), our features are simply the
path segments themselves. This simplicity, which comes from the
fact that our inside/outside classification is separate from the
distance computation, leads to an efficient representation that
guarantees exact interior classification.

3. Our vector graphics representation
Our basic shape primitive is a path with linear and/or quadratic
segments specified by a sequence of 2D points. Cubic segments
are adaptively subdivided into quadratic ones; these form an
excellent approximation for rendering purposes. Paths are defined
by lists of points, each one marked by one of four possible tags:
Moveto, Drawto, Curvepoint, or Last, as shown in Figure 2a.

(a)

f h

e
d

c

g
a

b

a-Moveto,
b-Last,
c-Moveto,
d-Curvepoint,
e-Drawto,
c-Last,
f-Moveto,
g-Drawto,
h-Last

{

}

(b)

…

Stroke ax ay M bx by L

cx cy M dx dy C ex ey D

fx fy M gx gy C hx hy L

cx cy L

Color

Fill Color
 Stroke Color

Width

Width

Figure 2: Example vector graphics and its encoding.

A layer associates a rendering state to the path, including whether
it is stroked and/or filled, its color, and stroke width. A filled path
must be closed; we define its interior using the even-odd fill rule.
The overall vector graphics consists of a back-to-front ordered list
of layers, and is encoded as a stream of instructions (Figure 2b).
The color specification consists of either a constant RGBA tuple
or an index into an array of gradient descriptors (Section 6).

4. Rendering
Most rendering algorithms for vector graphics objects operate by
rasterizing the input into an uniformly sampled output image.
Instead, to support random-access, we must design an algorithm
that can efficiently evaluate the color at any given point, in any
order, as requested by a pixel shader program.

The basic approach is to compute the color (including a partial
coverage opacity) contributed by each graphics layer at the
current pixel 𝑝, and to composite these colors in back-to-front
order, all within a single invocation of the pixel shader.

4.1 Compositing
When compositing, it is vital to distinguish between the two
sources of a layer’s transparency: the intrinsic transparency from
its color specification (alpha component), and the partial coverage
opacity near primitive boundaries. Partial coverage must be dealt
with in a linear color-space, lest dark primitives appear thicker
than they should [Blinn 1998] (see Figure 3a-b). Unfortunately,
most content creation tools represent colors in a nonlinear, gam-
ma-adjusted space (e.g. sRGB [Stokes et al. 1996]), and perform
compositing in this space. Misguided by this feedback, artists
select transparency parameters that would look entirely different if
linearly composited (see Figure 3c-d). Caught between the
hammer and the anvil, we must resort to a hybrid blending opera-
tion that independently treats each source of transparency.
Our hybrid blending operation takes an sRGB input layer color 𝑓
(including an intrinsic alpha), a coverage opacity 𝑜 ∈ [0,1], and a
background color 𝑐 in linear space, and returns the composite
color also in linear space:

blend�𝑐, 𝑓, 𝑜� = lerp �sRGB−1 �over(𝑓,  sRGB(𝑐)� ,  𝑐,  𝑜�.

For efficiency, the over compositing operation can assume
premultiplied alpha, as long as the color-space conversion func-
tions sRGB and sRGB−1 also operate in that space. Needless to
say, the process would be much simpler if all operations could be
performed in a linear color space, as they were meant to be.
The following section describes how to compute the partial
coverage opacity 𝑜 by prefiltering the vector graphics.

4.2 Prefiltering
Prefiltering eliminates high frequencies from the vector graphics
before sampling to prevent them from causing aliasing artifacts.
Given a kernel 𝑘(𝑝) (i.e. a low-pass filter) and an indicator
function 𝑙(𝑝) for a layer (i.e. 𝑙(𝑝) = 1 inside and 0 outside), the
partial coverage opacity is given by a screen-space 2D convolu-
tion 𝑜(𝑝) = 𝑘 ∗ 𝑙 = ∬𝑘(𝑝′ − 𝑝) ∙ 𝑙(𝑝′) 𝑑𝑝′.
Although exact prefiltering would be too costly to evaluate in
real-time, we employ a variety of simplifying assumptions that
make the process practical. For instance, we prefilter each layer
independently, which ignores the fact that layer compositing and
prefiltering do not generally commute, and thus may be incorrect
when multiple layers partially overlap a pixel.
Furthermore, within each path, we consider only the closest
segment to a pixel (which is incorrect when multiple path features
overlap a pixel). Then, in the case of filled paths, we locally
approximate 𝑙 by an infinite half-space (which breaks down near
sharp angles). Stroked paths can similarly be approximated by the

difference between two half-spaces, offset each way by half the
stroke width. Since convolution is a linear operation, stroke
prefiltering also reduces to convolution between a kernel and a
half-space: 𝑘 ∗ (𝑙+𝑤 − 𝑙−𝑤) = 𝑘 ∗ 𝑙+𝑤 − 𝑘 ∗ 𝑙−𝑤.
Kernel choice: If the kernel is radially symmetric, or if the
kernel is rotationally aligned with the half-space (which does not
seem to degrade the quality of the results), the convolution can be
expressed as a function 𝑜(𝑑) of the signed distance 𝑑 between the
pixel and the half-space [Gupta and Sproull 1981].
We have experimented with box, parabolic, and
Gaussian kernels. Figure 4 shows prefiltered
renderings of the inset resolution chart. Since
the simple box kernel is clearly unsatisfactory,
our preferred choice is the parabolic kernel
𝑘𝑝(𝑑) = 4

3
(1 − 𝑑2), 𝑑 ∈ [−1,1], which yields

𝑜𝑝(𝑑) = 1
2

+ 1
4
 (3𝑑 − 𝑑3) = smoothstep(−1,  1,  𝑑).

This provides a good tradeoff between quality and simplicity, and
is equivalent to the transition function intuitively proposed by
[Qin et al. 2006].
Evaluation: Each filled layer successively updates the pixel
color 𝑐, by means of the hybrid blending operation defined in
Section 4.1:

𝑐 = blend�𝑐,  fillcolor,  𝑜𝑝(𝑑)�.

Similarly, a stroked layer with half-width 𝑤 updates the pixel
color 𝑐 according to the rule:

𝑐 = blend �𝑐,  strokecolor,  𝑜𝑝(|𝑑| + 𝑤) − 𝑜𝑝(|𝑑| −𝑤)�.

For paths that are both filled and stroked, we perform two succes-
sive blend operations, first with the fill, and next with the stroke.
For simplicity, we first compute 𝑑′ and 𝑤′ in texture space, then
map them to screen space. The sign of 𝑑′, which defines the
interior of filled primitives, is obtained by shooting a ray from the
pixel to the right (+𝑥), tracking the number of intersections with
the path segments [Foley et al. 1990]. For each segment, we
determine the number ℎ𝑖 of ray intersections and the vector 𝑣𝑖
from the pixel to the closest point on the segment (see Sec-
tions 4.3 and 4.4). We combine these as

𝑣 = arg min𝑣𝑖‖𝑣𝑖‖ and ℎ = ( ∑ ℎ𝑖𝑖) mod 2,
to obtain

𝑑′ = −(−1)ℎ ‖𝑣‖.
Now consider the half-space perpendicular to vector 𝑣. Using the
Jacobian 𝐽 of the map from screen to texture coordinates (which
we obtain directly from the built-in ddx/ddy operations), we can
transform this half-space to screen coordinates. There, it lies at a
distance 𝑑 = 𝑠(𝑣) 𝑑′ from the pixel, with an anisotropic scaling
factor

𝑠(𝑣) =
‖𝑣‖
‖ 𝐽𝐽‖ .

Stroke widths are similarly scaled by 𝑠(𝑣), so that 𝑤 = 𝑠(𝑣) 𝑤′.

(a) (b) (c) (d)
Figure 3: The importance of compositing in the correct color-space.
(a) Correct, linear coverage computation. (b) Incorrect thicker results due
to nonlinear coverage. (c) Nonlinear intrinsic transparency expected by
the artist. (d) Result of linear compositing. Our hybrid blending operation
combines (a) and (c) to always produce the correct/expected results.

No prefiltering Box Parabolic Gaussian

Figure 4: Prefiltering results using different kernels. The Moiré patterns
are due to inter-primitive interactions, and are handled by the super-
sampling strategy of Section 4.5.

The example in Figure 5 shows two characters, a filled ‘A’ and a
stroked ‘B’, rendered at a grazing angle. The difference between
(a) and (b) shows the importance of anisotropy. The similarity
between (b) and (c) shows the accuracy of our approximation.
The overall rendering algorithm can be summarized as follows:

Initialize the pixel color, e.g. to white or transparent.
for (each layer)
 Initialize the pixel winding parity ℎ to 0 and distance vector 𝑣 to ∞.
 for (each segment in layer)
 Shoot ray from pixel through segment and update ℎ.
 Compute distance vector to segment and update 𝑣.
 Compute texture-space signed distance 𝑑′ from ℎ and 𝑣.
 Use 𝑣 to obtain screen-space signed distance 𝑑 and stroke width 𝑤.
 if (fill) Blend fill color with prefiltered opacity.
 if (stroke) Blend stroke color with prefiltered opacity.

We now describe the process of obtaining the winding number
increment ℎ𝑖 and vector distance 𝑣𝑖 for each segment type.

4.3 Linear segments
For each linear segment (𝑏𝑖 , 𝑏𝑖+1), the ray intersection count
ℎ𝑖 ∈ {0,1} and distance vector 𝑣𝑖 are given by (see Figure 6a):

𝑡𝑖 =
𝑝𝑦 − 𝑏𝑖,𝑦

𝑏𝑖+1,𝑦 − 𝑏𝑖,𝑦
 , 𝑞𝑖 = lerp(𝑏𝑖 , 𝑏𝑖+1, 𝑡𝑖) ,

ℎ𝑖 = �1, if 0 ≤ 𝑡𝑖 ≤ 1 and 𝑞𝑖,𝑥 > 𝑝𝑥
0, otherwise ,

𝑡𝑖′ = clamp �
(𝑝 − 𝑏𝑖) ⋅ (𝑏𝑖+1 − 𝑏𝑖)

(𝑏𝑖+1 − 𝑏𝑖) ⋅ (𝑏𝑖+1 − 𝑏𝑖)
, 0,1� ,

𝑣𝑖 = 𝑝 − lerp(𝑏𝑖 ,𝑏𝑖+1, 𝑡𝑖′) .

If the ray passes exactly through a vertex at rendering time, we
perturb its vertical coordinate imperceptibly for robustness.

4.4 Quadratic segments
Each segment (𝑏𝑖−1, 𝑏𝑖 , 𝑏𝑖+1), with 𝑏𝑖 tagged Curvepoint, defines
a Bézier curve 𝑏(𝑡) = (1 − 𝑡)2𝑏𝑖−1 + 2(1 − 𝑡)𝑡 𝑏𝑖 + 𝑡2𝑏𝑖+1 on
the interval 0 ≤ 𝑡 ≤ 1. The intersection count ℎ𝑖 ∈ {0,1,2} and
vector 𝑣𝑖 are found as follows (see Figure 6b).
Any intersections of the +𝑥 ray from pixel 𝑝 with the (infinite)
quadratic curve are found as the roots 𝑡1 and 𝑡2 of the quadratic
equation 𝑏𝑦(𝑡𝑗) = 𝑝𝑦. For each root 𝑡𝑗, we increment the ray
intersection count 𝑤𝑖 if the point 𝑏(𝑡𝑗) lies within the curve
segment (i.e. 0 ≤ 𝑡𝑗 ≤ 1) and to the right of 𝑝 (i.e. 𝑏𝑥(𝑡𝑗) > 𝑝𝑥).
The quadratic equation 𝑏𝑦(𝑡) = 𝑝𝑦 becomes linear if the parabola
axis is horizontal, i.e. 𝑏𝑖,𝑦 = 1

2
�𝑏𝑖−1,𝑦 + 𝑏𝑖+1,𝑦�. To avoid having

to test this condition at runtime, we imperceptibly perturb the
point 𝑏𝑖 by one bit during encoding.

Computing the distance to the quadratic Bézier curve involves
finding the roots of a cubic polynomial. Analytic roots require
transcendental functions and are thus expensive to evaluate [Blinn
2006]. Iterative solvers [Qin et al. 2008] can be a faster alterna-
tive within the radius of curvature of the curve.
Instead, like Loop and Blinn [2005], we develop a fast approxi-
mate technique based on implicitization. But whereas their
triangle-bounded rasterization approach only needs distance to an
infinite curve, we require distance to a curve segment, i.e. taking
the endpoints into account.
At rendering time, we convert the Bézier curve to its implicit
quadratic representation 𝑓(𝑝) = 0, given by the Bezout form of
its resultant [Goldman et al. 1984]:

𝑓(𝑝) = 𝛽(𝑝) 𝛿(𝑝) − 𝛼2(𝑝), with
𝛽(𝑝) = 2 Det(𝑝, 𝑏𝑖 , 𝑏𝑖−1), 𝛿(𝑝) = 2 Det(𝑝, 𝑏𝑖+1, 𝑏𝑖),

𝛼(𝑝) = Det(𝑝, 𝑏𝑖−1, 𝑏𝑖+1), and Det(𝑝, 𝑞, 𝑟) = �𝑝 𝑞 𝑟
1 1 1� .

The zero set of the first-order Taylor expansion of 𝑓 centered at 𝑝
defines a line, and the closest point 𝑝′ to 𝑝 on this line is given by

𝑝′ = 𝑝 −
𝑓(𝑝) ∇𝑓(𝑝)
‖∇𝑓(𝑝)‖2 .

For 𝑝′ exactly on the curve, we can find the parameter 𝑡′such that
𝑏(𝑡′) = 𝑝′ by inversion. In the quadratic Bézier case, Goldman et
al. [1984] show that inversion can be obtained by

𝑡′ =
𝑢𝑗′

1 + 𝑢𝑗′
 , with either 𝑢1′ =

𝛽(𝑝′)
𝛼(𝑝′) or 𝑢2′ =

𝛼(𝑝′)
𝛿(𝑝′) .

In fact, if 𝑝′ lies on the curve, the resultant vanishes, and 𝑢1′ = 𝑢2′ .
Since this is generally not the case, the two values differ, and we
must rely on an approximation. Our contribution is the choice

𝑢� =
𝛼(𝑝′) + 𝛽(𝑝′)
𝛼(𝑝′) + 𝛿(𝑝′)

which gives

𝑡̅ =
𝛼(𝑝′) + 𝛽(𝑝′)

2𝛼(𝑝′) + 𝛽(𝑝′) + 𝛿(𝑝′) .

Notice that 𝑡̅ is exact whenever 𝑝′ is on the curve. The biggest
advantage of 𝑡̅, however, is that it is continuous, even when 𝑝′
coincides with one of the control points, where either 𝑢1′ or 𝑢2′
becomes undefined. The denominator of 𝑡̅ is zero only if 𝑏0, 𝑏1,
and 𝑏2 are collinear, in which case we would have converted the
primitive to a linear segment. The same holds for ‖∇𝑓(𝑝)‖.
From 𝑡̅, we then obtain the distance vector as

𝑣𝑖 = 𝑝 − 𝑏�clamp(𝑡̅, 0,1)� .
Note that implementation of these formulas is simpler if the
Bézier points 𝑏 are translated so as to place 𝑝 (and later 𝑝′) at the
origin. The HLSL source code shown below compiles to just 32
assembly instructions, contains only two division instructions and
no transcendental functions, square roots, loops, or branching.

(a) Isotropic filtering for comparison.

(b) Prefiltering of Section 4.2, using a parabolic filter.

(c) Supersampling of Section 4.5, 𝑘 = 400 (no prefiltering).

Figure 5: Anisotropic antialiasing of filled and stroked primitives.

 bi

bi+1

p

vi

qi

+x ray

(a)

pixel

bi-1

bi

pp

bi+1

vi +x ray

(b)

ppiixxeell
Figure 6: Ray intersection testing and distance computation, for (a) linear
and (b) quadratic path segments.

inline float det(float2 a, float2 b) { return a.x*b.y-b.x*a.y; }
// Find vector 𝑣𝑖 given pixel 𝑝=(0,0) and Bézier points 𝑏0,𝑏1,𝑏2.
float2 get_distance_vector(float2 b0, float2 b1, float2 b2) {
 float a=det(b0,b2), b=2*det(b1,b0), d=2*det(b2,b1); // 𝛼,𝛽,𝛿(𝑝)
 float f=b*d-a*a; // 𝑓(𝑝)
 float d21=b2-b1, d10=b1-b0, d20=b2-b0;
 float2 gf=2*(b*d21+d*d10+a*d20);
 gf=float2(gf.y,-gf.x); // ∇𝑓(𝑝)
 float2 pp=-f*gf/dot(gf,gf); // 𝑝′
 float2 d0p=b0-pp; // 𝑝′ to origin
 float ap=det(d0p,d20), bp=2*det(d10,d0p); // 𝛼,𝛽(𝑝′)
 // (note that 2*ap+bp+dp=2*a+b+d=4*area(b0,b1,b2))
 float t=clamp((ap+bp)/(2*a+b+d), 0,1); // 𝑡̅
 return lerp(lerp(b0,b1,t),lerp(b1,b2,t),t); // 𝑣𝑖 = 𝑏(𝑡̅)
}

We have found that this approximate distance is sufficiently
accurate for the purpose of prefiltering and thin-stroke rendering,
as visually demonstrated in Figure 7. Note the correct behavior at
the endpoints, and the high precision in the neighborhood of the
curve, where it is most relevant for prefiltering. Wide stroke
paths whose outlines are poorly approximated are pre-converted
to filled primitives. It would be desirable to characterize the
maximum error analytically, but unfortunately this seems hard.

4.5 Supersampling
The prefiltering strategy described in Section 4.2 relies on simpli-
fying assumptions that break down when many primitives overlap
a pixel. One possible high-quality approximation in traditional
rasterization is the A-buffer [Carpenter 1984], which maintains
per-pixel lists of fragments, with each fragment containing a
subpixel bitmask. However, this approach is challenging to
implement efficiently in hardware [Winner et al. 1997].
Because cells store the full list of relevant vector primitives (on
the current surface), we can evaluate and combine colors at
multiple subpixel samples, without any added bandwidth.
The first step is to determine the footprint of the pixel in texture
space, just as in anisotropic texture filtering [Heckbert 1989].
This footprint could overlap several cells, which would require
parsing of multiple cell streams. Fortunately, use of extended
cells (Section 5.1) provides a margin so we need only consider the
current cell. When a pixel footprint grows larger than the overlap
region, we transition to conventional anisotropic mipmapping.
Our system evaluates a set of 𝑘 weighted samples within a paral-
lelogram footprint as shown in Figure 8. More precisely, given a
sampling pattern defined by local displacements 𝑢𝑗 and weights
𝑎𝑗 , the final pixel color is computed as the weighted sum ∑ 𝑎𝑗 𝑐𝑗𝑗
where 𝑐𝑗 is the sample color evaluated at displaced position
𝑝𝑗 = 𝑝 + 𝐽𝑢𝑗 . We use sampling patterns P(1,4,2) or P(1,4,4) from
[Laine and Aila 2006], corresponding to 𝑘=4 or 8. Because the
footprints overlap in screen space, it would be ideal if samples
could be shared among adjacent pixels, as suggested by Laine and

Aila [2006]. Unfortunately current hardware does not permit this,
but perhaps this will be possible in the future.
We traverse the cell stream just once, updating all samples 𝑐𝑗 as
each primitive is decoded. This requires allocating a few tempo-
rary registers per sample (accumulated color 𝑐, accumulated
winding parity ℎ, and shortest distance vector 𝑣). For each
subpixel sample, we still evaluate the prefilter antialiasing of
Section 4.2, but with a modified Jacobian matrix 𝐽′ = �𝑠/𝑘    𝐽
where 𝑠 is the kernel support area in pixels, to account for the
changed inter-sample spacing.
The number 𝑘 of samples is adaptively selected based on the cell
complexity. In our current system, we use the simple approach of
overriding 𝑘 to equal 1 in cells containing a single graphics layer
with uniform color. An alternative would be to let the cell encod-
ing explicitly specify the desired supersampling complexity.
Figure 9 compares the rendering quality with different antialiasing
settings. Although the computation has a cost that scales as 𝑂(𝑘),
it is performed entirely on local data, and is therefore amenable to
additional parallelism in future GPUs. For ground-truth, we use
𝑘=400 samples, weighted according to the (13,

1
3) kernel of Mitchell

and Netravali [1988]. Notice how results are close to ground-
truth with just 8 samples/pixel, but only if prefiltering is enabled.
The overall rendering algorithm with supersample antialiasing can
be summarized as follows:

for (each sample)
 Initialize the sample color, e.g. to white or transparent.
for (each layer)
 for (each sample 𝑖)
 Initialize the sample winding parity ℎ𝑗 to 0.
 Initialize the sample distance vector 𝑣𝑗 to ∞.
 for (each segment in layer)
 for (each sample 𝑖)
 Shoot ray from sample through segment, and update ℎ𝑗.
 Compute absolute distance to segment, and update 𝑣𝑗.
 for (each sample 𝑖)
 Use 𝑣𝑖 to obtain screen space distance 𝑑𝑗 and stroke width 𝑤𝑗.
 if (fill) Blend fill color over sample with prefilter opacity.
 if (stroke) Blend stroke color over sample with prefilter opacity.
Compute the weighted sum of sample colors to obtain the pixel color.

Figure 7: (a) Exact distance to a quadratic curve involves cubic polynomi-
al roots. (b) A first-order implicit approximation [Loop and Blinn 2005]
does not capture the segment endpoints. (c) Our inversion-based approx-
imation is fast, and visual analysis reveals that it is sufficiently accurate in
the vicinity of the curve.

p′

Screen-space pixel Texture-space cell

(k=16) p′

Figure 8: Supersample antialiasing evaluates color at multiple samples
(shown in green) during a single shader evaluation.

1 sample 4 samples 8 samples 400 samples

Without prefiltering

With prefiltering

Figure 9: Use of supersampling to resolve interactions between multiple
primitives per pixel, with and without the prefiltering of Section 4.2.

(a) (b) (c)

5. Conversion to specialized cells
We now describe our method for converting vector graphics to a
cell-specialized description, to enable compact storage and effi-
cient runtime evaluation. Because the conversion algorithm is
very fast, it may also prove useful for software rasterization,
especially on many-core processors.

5.1 Extended cells
First, we must identify the set of primitives that could contribute
to the rendering of any pixel falling within a given cell. Obvious-
ly, any filled path must be included if its interior overlaps the cell.
Stroked paths must be included if the path outline (offset either
way by half the stroke width) overlaps the cell.
Furthermore, when either prefiltering or supersampling is enabled,
a primitive must also be represented in a cell if its convolution
with the associated kernel overlaps the cell, i.e., the minimum
screen-space distance between the primitive and the cell is less
than the finite kernel support (see Section 4.2 and 4.5). This
screen-space distance may vary at runtime. As the cells shrink to
the size of a screen pixel, the width of the kernel may become as
large as an entire cell. At extreme minification, several cells map
into individual pixels, so antialiasing breaks down, and one must
instead transition to a conventional raster mipmap pyramid.
To allow satisfactory antialiasing up to a reasonable minification
level (where we transition to a mipmap), we find the primitives
that overlap an extended cell as illustrated in Figure 10. Growing
this extended cell allows a coarser mipmap pyramid, but increases
the length of the cell streams since more primitives lie in the
extended cell. We have found that a good tradeoff is to set the
overlap band to be 10-20% of the cell size.

5.2 Cell-based specialization
Although specializing stroked paths to an extended cell is trivial,
dealing with filled primitives requires some form of polygon
clipping. Of course, independently clipping each filled input path
against each extended cell in an entire lattice would be prohibi-
tively inefficient. The time required (say, by using an extension
of [Sutherland-Hodgman 1974] to piecewise quadratic segments)
would be proportional to 𝑂(𝑛 𝑟2), where 𝑛 is the number of input
vertices and 𝑟2 is the number of grid cells. To accelerate the
process, we could perhaps use recursive subdivision over a quad-
tree of cells, in line with what is described by [Warnock 1969].
This strategy could reduce the time complexity to 𝑂(𝑛 log 𝑟 + 𝑎),
where 𝑎 is the output size.
Fortunately, we can do even better than that. Our lattice-clipping
algorithm streams over the primitives just once, and directly clips
each filled path against every cell that overlaps it. The resulting
time complexity is only 𝑂(𝑛 + 𝑟 + 𝑎), and the simplicity of the
algorithm contributes to its speed in practice.
To achieve a more compact representation, we exploit knowledge
of our particular rendering algorithm. Specifically, since render-
ing is based on shooting rays in the +𝑥 direction, we can safely
omit segments that lie above, to the left, or below each extended
cell, as they never take part in the winding number computation.

5.3 Fast lattice-clipping algorithm
Figure 11 shows an example of the desired output. The main
difficulty is the introduction of auxiliary segments on the right
boundary of each extended cell (shown in red), so that rays cast in
the +𝑥 direction encounter the correct number of intersections. In
the top row of the example, these auxiliary segments are connect-
ed to the bottom of the cell. However, in the bottom row they are
connected to the top. Unfortunately, there is no local decision
procedure for determining which is the case at hand. Notice that,
compared to a downward auxiliary segment, an upward auxiliary
segment uniformly increments the winding number within the
cell. The trick is therefore to make a consistent, arbitrary deci-
sion, and correct it afterwards.
To that end, we always extend the path segments crossing the
right boundary of a cell to the top right corner of the cell. Figure
12 shows this intermediary representation (notice the green
arrows). Whenever a path segment crosses the bottom of a cell,
we know that every cell to its left will make a mistake. We
therefore record into the cell a change Δℎ in winding number, to
affect all cells to the left in that row (+1 for upward segment and
−1 for downward segment). Once all segments have been pro-
cessed, we efficiently traverse each row right-to-left, integrating
the winding number changes. For each cell with a resulting
nonzero winding increment, we add an appropriate number of
upward or downward auxiliary segments, spanning the entire row
(see the red arrows in the figure). The resulting green and red
edges are finally merged together to produce a result equivalent to
that of Figure 11.
For completeness we provide here a more detailed algorithm:

for (each segment in a layer)
 Enter the segment into the lattice cell(s) that it overlaps,
 clipping it to the cell boundaries.
 if the segment leaves a cell through its right boundary,
 add a segment from the intersection to the top right corner.
 if the segment enters a cell through its right boundary,
 add a segment from the top right corner to the intersection.
 if the segment enters a cell through its lower boundary,
 increment Δℎ𝑐 on the cell.
 if the segment leaves a through its lower boundary,
 decrement Δℎ𝑐 on the cell.
Sort all modified Δℎ𝑐 (merge rows, bucket sort columns, split rows)
for (each row of modified cells)
 Initialize the winding number ℎ = 0 (associated with the row).
 for (each span of cells in right-to-left order) {
 Add |h| vertical segments on the right boundary of the cell,
 pointing up if ℎ > 0, or down otherwise.
 Merge the cell segments if possible.
 Update the winding number as the running sum ℎ = ℎ + Δℎ𝑐.
Clear only the modified Δℎ𝑐 (i.e., using linked lists)

Extended cell includes
overlap region

~10-20%
Figure 10: For correct antialiasing, each cell stores all primitives that
affect an extended cell region.

Figure 11: For a filled shape, polygon clipping to each extended cell
gives the paths on the right; the dashed segments have no effect on our
winding rule computation and are therefore ignored, whereas the red
segments must be included.

Overall the algorithm is extremely fast, processing even our most
complicated example (~100K segments) in less than a second (see
Table 3). For the case of the even-odd fill rule, the algorithm can
be simplified further to preserve just the parity of the winding
number. Figure 13 shows an example with an intricate self-
intersecting shape. On the right, the figure shows the resulting
intermediary and final specialized encodings for selected cells.
As a final step, we convert all points to a [0 … 1]2 coordinate
system over the extended cell. In the rare case that a middle
Curvepoint Bézier control point lies outside the extended cell, we
recursively subdivide the curve into smaller Bézier segments.

5.4 Occlusion optimization
When the vector graphics is specialized to a cell, it is possible for
the shape within one layer to become completely occluded by one
or more layers in front of it. In traditional rendering this would
cause overdraw. Now we have the opportunity to locally remove
the occluded layer. One could use general polygon-polygon
clipping [Greiner and Hormann 1998] to check if any layer is
fully occluded by the union of the layers in front of it. In our
current system, we simply check if any opaque, filled layer fully
occludes the cell, and if so remove all layers behind it. As an
example, for the Tiger model in Figure 19, the average cell stream
length is reduced from 9.5 to 7.0 words.

6. Implementation details
Our system uses the Microsoft DirectX 10 API to benefit from
linear memory buffers. (An earlier implementation using Di-
rectX 9 was slightly more complicated [Nehab and Hoppe 2007].)
Storage of nonuniform cells: Cell streams are variable-length,
so we need a data structure to pack them in memory. Note that
the cell streams are self-terminating, so it is unnecessary to store
their lengths explicitly. We simply concatenate all streams in
raster-scan order into a linear memory buffer (Figure 14), letting a
2D indirection table contain pointers to the start of each cell
stream. Naturally, we coalesce identical streams to allow for
sharing between cells. Although our implementation employs a
flat indirection structure, it would be easy to replace it with a
variable-rate perfect spatial hash [Nehab and Hoppe 2007] or
other space-efficient data structure [Lefohn et al. 2006].
Cell stream encoding: Our streams follow a simple grammar
that closely resembles a sequence of instructions (Figure 2b).
Each layer starts with a 32-bit RGBA layer header. We reserve
one bit of each channel to define 4 flags: Last, Stroke, Fill, and
Gradient. For stroked paths, the stroke width is stored in the alpha
channel. The same layer path can be both stroked and filled in the
common case that its stroke color is black and fill color is opaque.

Gradient fills can be used to map 2D global coordinates to colors.
This mapping consists of four stages: (1) an affine mapping 𝑀
from 2D lattice coordinates to 2D gradient space, (2) a linear or
radial mapping from 2D gradient space to a parameter 𝑡′ ∈ ℝ,
(3) a wrapping function from 𝑡′ to 𝑡 ∈ [0,1], (4) and a piecewise-
linear color ramp function 𝐶 sampled at 𝑡.

We encode these gradient mappings as follows. We store an
approximation of each color ramp function 𝐶 as a rasterized 1D
texture, and concatenate these into a single 1D texture.

To evaluate the gradient color for a layer, we first obtain the point
𝑝𝑔 = 𝑀 𝑝 in gradient space. Then, for linear gradients, 𝑡′ is
simply given by the 𝑥-coordinate of 𝑝𝑔 (Figure 15 left). Radial
gradients are parameterized by a scalar 𝑐𝑥 that defines the center
(𝑐𝑥, 0) of a unit circle in gradient space. The value 𝑡′ is then
given by the ratio �𝑝𝑔�/‖𝑞‖, where point 𝑞 is the intersection of
the ray �0,𝑝𝑔� with the unit circle (Figure 15 right). Thus, a
radial gradient descriptor requires the full 2×3-matrix 𝑀 plus the
value 𝑐𝑥 (7 floats); a linear gradient requires only the first row of
𝑀 (3 floats). We pack these coefficients into 4-vectors, using the
leftover element to store an offset into the concatenated ramp
texture. We store these in a linear buffer of gradient descriptors.

If the Gradient flag of a layer header is set, we use the color
channels to encode an index into the gradient descriptor buffer,
and a scaling factor used in accessing the gradient ramp texture.
The type of gradient (linear or radial) and the wrapping function
for 𝑡′ → 𝑡 (clamp, reflect, or repeat) are encoded by three bits in
the layer header.

Each layer header is followed by a stream of cell-local coordi-
nates (𝑥,𝑦), quantized to 16 bits. We reserve one bit of each
coordinate to encode the 4 tags: Moveto, Drawto, Curvepoint, and
Last. As an optimization, we assume that each layer is implicitly
prefixed by a Moveto instruction to the lower-right of the cell, as
this helps remove a point in many cases (e.g. all 6 cells with red
segments in Figure 11). Table 1 shows the storage size of differ-
ent path configurations per layer.

∆∆hh==++11 ∆∆hh==−−11

∆∆hh==++11 ∆∆hh==−−11

00 11 11

00 11 11

00 00 00

Figure 12: To recover correct winding numbers within the cells, our fast
algorithm inserts auxiliary segments (green) on right boundaries, and
makes a right-to-left sum of bottom-boundary intersections to appropriate-
ly insert right-boundary edges (red). After some local simplification, the
result is equivalent to that in Figure 11.

Figure 13: Demonstration of our fast cell-specialization algorithm on a
complex shape with self-intersections.

Lattice cells Indirection table Data

Cell
stream

1D buffer
Gradient
descriptors

Concatenated
gradient ramps

Figure 14: We pack the variable-length cell streams into a 1D memory
buffer using a 2D indirection table.

Cell contents Length
Constant color 1*

1 linear segment 3
2 linear segments 4-5
3 linear segments 5-7

1 quadratic segment 4
2 quadratic segments 6-7
3 quadratic segments 8-10

Table 1: Number of 32-bit words required per cell layer as a function of
path complexity. Ranges depend on whether Moveto points are needed.
*Likely shared by many cells.

Cell stream parsing: Within the pixel shader, we interpret the
cell stream and evaluate the rendering algorithm of Section 5.
This interpretation involves a set of nested loops: over layers,
control points, and supersample locations. The resulting pixel
shader program complexities for various graphics types are
summarized in Table 2.

7. Results and discussion
All results are obtained using an NVIDIA GeForce 8800 GTX, in
a 7202 window. The examples in this section use an overlap
region of size 10-20% (depending on the maximum stroke width).
Timing analysis: As far as preprocessing is concerned, the
construction method of Section 5.3 takes less than a second to
encode even our most complex examples (see Table 3). Although
this was not our goal, simple animated textures (i.e., few thousand
animated vertices, or restricted to particular layers) should be
possible. By spreading the encoding across multiple CPU cores,
it should be possible to support even complex animated textures.
Figure 16 plots the rendering rate from cell streams as a function
of lattice resolution, for the Tiger in Figure 19. At coarse lattice
resolutions, the larger cells increase the number of primitives per
cell, which in turn increases the per-pixel rendering cost and
therefore lead to slower rendering rates. Conversely, at very fine
lattice resolutions, the majority of cells contain a uniform (solid or
gradient) color, so rendering speed reaches a plateau.
Our evaluation algorithm should not be memory-bound because
the same cell data is reused by many nearby pixels. Indeed, we
have run some tests where we let each pixel parse its cell stream
without performing rendering computations, and the frame rates
increased by a factor of 3–4. This indicates that we are presently
compute-bound, and performance will benefit greatly from addi-
tional computational cores in future hardware.
The pixel shader makes several coarse-grain branching decisions,
based on the number and types of primitives in the cell stream.
Fortunately, these decisions are identical for nearby pixels access-
ing the same stream, which occurs if pixels lie in the same lattice
cell, or if adjacent cells share the same cell stream (e.g., in areas
of constant color), so the SIMD branching penalty is reduced.
Space analysis: Table 3 shows the size of the stream buffers for
each of our examples. Under reasonable lattice resolution set-

tings, the cell specialized representation is comparable in size to
the input textual vector graphics description. Naturally, as shown
in Figure 16, the stream buffer size grows linearly with the lattice
resolution. This was expected due to increased sharing of con-
stant color cells at higher resolutions (i.e., only boundaries need
be encoded individually). In contrast, the memory requirements
of the indirection table grow quadratically with the lattice resolu-
tion (just like a regular image). Fortunately, if memory is at a
premium and the lattice resolution is very high, this problem
could be eliminated by replacing the currently flat indirection
structure with a hierarchical data structure, such as a quadtree.
We manually selected lattice resolutions. Table 3 shows the
chosen values for each dataset. Note that the memory sizes are on
the same order as a typical image representation (but of course
cell-specialized graphics allow resolution-independent rendering).
Figure 17 shows a histogram of cell stream lengths for the Lion
example. The most common type of cell is one containing a
single word indicating a constant color. Figure 18 visualizes the
varying length of the cell streams for another encoded illustration.
Examples: Figure 19 presents a collection of vector graphics
examples of various types, and Table 3 reports on their complexi-
ties, sizes, and rendering rates. Our representation is trivial to
map onto surfaces as demonstrated in Figure 1, or to deform by
arbitrary parametric warps, as shown in Figure 20.

Dataset Input
vertices

Encoding
time
(s)

 Cell-specialized representation
Rendering

(fps)
Size
(KB)

Lattice
resolution

Stream
length

 Avg. Max. 𝑘=1 𝑘=8
Glass 390 0.02 20 24×32 6.3 69 238.2 44.3
Logo 498 0.01 16 32×19 5.1 39 381.4 70.5
Dice 942 0.02 20 32×20 7.3 85 271.2 42.4
Eyes 1061 0.05 44 64×41 4.3 58 285.9 54.9
Penguin 1760 0.05 36 64×58 2.6 92 294.9 53.7
Lion 2078 0.06 48 21×32 17.4 80 212.4 30.8
Scorpion 2129 0.06 80 63×64 5.0 92 193.1 31.1
Dragonfly 2696 0.14 128 128×128 2.9 96 214.9 43.0
Dancer 2935 0.10 80 35×64 9.1 71 217.4 35.4
Skater 4122 0.07 64 30×48 11.1 132 176.6 26.8
Drops 5716 0.27 344 115×128 6.6 110 141.8 23.7
Butterfly 5836 0.08 92 64×41 8.8 91 194.0 31.0
Desktop 8687 0.11 132 64×41 13.7 280 113.4 16.8
Reschart 9445 0.23 212 128×79 6.3 132 232.7 37.1
Hygieia 9922 0.10 128 28×64 18.0 107 162.4 23.2
Tiger 16315 0.44 428 125×128 7.0 134 123.5 17.5
Embrace 18761 1.02 792 240×256 4.5 165 129.7 22.8
CAD 22393 0.30 360 128×100 7.5 172 140.0 24.0
Denmark 101386 0.59 912 128×99 19.2 286 58.2 7.9
Boston 108719 0.91 1132 200×180 8.8 351 63.2 8.4
Table 3: Quantitative results, including input vertices, construction times,
cell stream statistics, and rendering rates without/with supersampling.
Stream lengths are in 32-bit words.

Figure 15: Evaluation of linear and radial color gradients.

Vector primitive types No prefilter Prefilter Prefilter +
supersampling

Linear paths, no strokes 117 145 205
Linear paths, with strokes 152 167 230

Quadratic paths, no strokes 160 221 301
Quadratic, with strokes 228 243 327

+ Gradients 310 325 418
Table 2: Pixel shader instruction counts (including loops).

𝑝𝑔 𝑝𝑔

(𝑐𝑥, 0)
(1,0) (1+𝑐𝑥, 0)

�𝑝𝑔𝑥 , 0�

𝑞

8. Summary and future work
Cell streams are constructed by spatially specializing a vector
graphics description to the cells of a lattice using a fast algorithm.
These streams allow efficient random-access evaluation of com-
posited layers of filled and stroked shapes, complete with
transparency, color gradients, and high-quality antialiasing.
Avenues for future work include:
• Extension of cell streams to allow more rendering attributes

(e.g. blurs or vector graphics instancing). Streams could gener-
alize to full programs, including subroutines and recursion;

• Improvements to the adaptivity of the supersampling algorithm;
• Parallelized implementation of the encoding stage, enabling

real-time animations, perhaps even a GPU implementation;
• Generalization of the concept of cell-based specialization to

other applications besides vector graphics.

Figure 16: Memory usage and rendering rate as a function of lattice
resolution for the Tiger in Figure 19.

Figure 17: Histogram of cell stream lengths for the Lion in Figure 1.

Acknowledgments
The authors would like to thank Renato Werneck and Pedro V.
Sander for fruitful discussions about the lattice-clipping algo-
rithm. Daniel Szecket created the 3D model for the foldable map
in Figure 1. The vector art on the cup model in the same figure is
based on work by Aurelio A. Heckert.

References
BLINN J. 1998. A ghost in a snowstorm, IEEE CG&A, 18(1), 79-

84.
BLINN J. 2006. How to solve a cubic equation, Part 2: The 11

Case. IEEE CG&A, 26(4), 90-100.
CARPENTER L. 1984. The A-buffer, an antialiased hidden surface

method. ACM SIGGRAPH, 103-108.

FOLEY J., VAN DAM A., FEINER S., AND HUGHES J. 1990. Computer
Graphics: Principles and Practice. Addison Wesley.

FRISKEN S., PERRY R., ROCKWOOD A., AND JONES T. 2000. Adap-
tively sampled distance fields: A general representation of
shape for computer graphics. ACM SIGGRAPH, 249-254.

GOLDMAN R., SEDERBERG T., AND ANDERSON D. 1984. Vector
elimination: A technique for the implicitization, inversion, and
intersection of planar parametric rational polynomial curves.
CAGD 1, 327-356.

GREINER G., AND HORMANN K. 1998. Efficient clipping of
arbitrary polygons. ACM TOG 17(2), 71-83.

GUPTA S., AND SPROULL R. 1981. Filtering edges for gray-scale
displays. ACM SIGGRAPH.

HECKBERT P. 1989. Fundamentals of texture mapping and image
warping. M.S. Thesis, UC Berkeley, Dept of EECS.

LAINE S., AND AILA T. 2006. A weighted error metric and optimi-
zation method for antialiasing patterns. Eurographics, 83-94.

MITCHELL D., AND NETRAVALI A. 1988. Reconstruction filters in
computer graphics. ACM SIGGRAPH, 221-228.

LEFEBVRE S., AND HOPPE H. 2006. Perfect spatial hashing. ACM
SIGGRAPH, 579-588.

LEFOHN A., KNISS J., STRZODKA R., SENGUPTA S., AND OWENS J.
2006. Glift: Generic efficient random-access GPU data struc-
tures, ACM TOG 25(1), 1-37.

LOOP C., AND BLINN J. 2005. Resolution-independent curve
rendering using programmable graphics hardware. ACM SIG-
GRAPH, 1000-1009.

LOVISCACH J. 2005. Efficient magnification of bi-level textures.
ACM SIGGRAPH Sketches.

NEHAB D., AND HOPPE H. 2007. Texel programs for random-
access antialiased vector graphics. Microsoft Research Tech-
nical Report MSR-TR-2007-95, July 2007.

PARILOV E., AND ZORIN D. 2008. Real-time rendering of textures
with feature curves. ACM TOG, 27(1).

QIN Z., MCCOOL M., AND KAPLAN C. 2006. Real-time texture-
mapped vector glyphs. Symposium on Interactive 3D Graphics
and Games, 125-132.

QIN Z., MCCOOL M., AND KAPLAN C. 2008. Precise vector
textures for real-time 3D rendering. Symposium on Interactive
3D Graphics and Games.

RAMANARAYANAN G., BALA K., AND WALTER B. 2004. Feature-
based textures. Symposium on Rendering, 65-73.

RAY N., CAVIN X., AND LÉVY B. 2005. Vector texture maps on the
GPU. Technical Report ALICE-TR-05-003.

PERSSON E. 2007. Selective supersampling. Shader X5, 177-183.

Close-up of lattice Cell stream lengths

(darker is longer)
Figure 18: Visualization of the varying length of cell streams.

SEN P., CAMMARANO M., AND HANRAHAN P. 2003. Shadow
silhouette maps. ACM SIGGRAPH, 521-526.

SEN P. 2004. Silhouette maps for improved texture magnifica-
tion. Symposium on Graphics Hardware, 65-73.

STOKES M., ANDERSON M., CHANDRASEKAR S. AND MOTTA R.
1996. A standard default color space for the Internet – sRGB
http://www.w3.org/Graphics/Color/sRGB.html

SUTHERLAND I., AND HODGMAN G. 1974. Reentrant polygon
clipping. Communications of the ACM 17(1), 32-42.

TARINI M., AND CIGNONI P. 2005. Pinchmaps: Textures with
customizable discontinuities. Eurographics, 557-568.

TUMBLIN J., AND CHOUDHURY P. 2004. Bixels: Picture samples
with sharp embedded boundaries. Symposium on Rendering,
186-194.

WARNOCK J. 1969. A hidden surface algorithm for computer
generated halftone pictures. PhD Thesis, University of Utah.

WINNER S., KELLEY M., PEASE B., RIVARD B., AND YEN A. 1997.
Hardware accelerated rendering of antialiasing using a modi-
fied A-buffer algorithm. ACM SIGGRAPH, 307-316.

Figure 20: Parametric warps. By perturbing the texture coordinates prior
to rendering, we can produce distortion effects that are gaining popularity
in modern user interfaces, while retaining the crispness and resolution-
independence of the vector graphics description.

Figure 19: Example rendering results. On the left, prefilter antialiased results.
The close-ups on the right show (a) high-resolution renderings overlaid with
the lattice grid, (b) non-antialiased, (c) prefiltering only, and (d) prefiltering
with 𝑘=8 supersampling.

(Already close-up)

(a) (b)

(d) (c)

	1. Introduction
	2. Related work
	3. Our vector graphics representation
	4. Rendering
	4.1 Compositing
	4.2 Prefiltering
	4.3 Linear segments
	4.4 Quadratic segments
	4.5 Supersampling

	5. Conversion to specialized cells
	5.1 Extended cells
	5.2 Cell-based specialization
	5.3 Fast lattice-clipping algorithm
	5.4 Occlusion optimization

	6. Implementation details
	7. Results and discussion
	8. Summary and future work
	Acknowledgments
	References

