A Subdivision-Based Representation for
Vector Image Editing

Zicheng Liao, Hugues Hoppe, David Forsyth, and Yizhou Yu

Abstract—\Vector graphics has been employed in a wide variety of applications due to its scalability and editability. Editability is a
high priority for artists and designers who wish to produce vector-based graphical content with user interaction. In this paper, we
introduce a new vector image representation based on piecewise smooth subdivision surfaces, which is a simple, unified and flexible
framework that supports a variety of operations, including shape editing, color editing, image stylization, and vector image processing.
These operations effectively create novel vector graphics by reusing and altering existing image vectorization results. Because image
vectorization yields an abstraction of the original raster image, controlling the level of detail of this abstraction is highly desirable. To
this end, we design a feature-oriented vector image pyramid that offers multiple levels of abstraction simultaneously. Our new vector
image representation can be rasterized efficiently using GPU-accelerated subdivision. Experiments indicate that our vector image
representation achieves high visual quality and better supports editing operations than existing representations.

Index Terms—vector graphics, subdivision surfaces, multiresolution representation, vector image editing.

1 INTRODUCTION

HERE has been a recent resurgence of vector-based
T graphical content in personal computers and on the
Internet. For example, major operating systems have
increasingly adopted vector graphics in their user in-
terface, and Adobe Flash has strengthened support for
vector graphics in rich internet applications. Vector-
based drawing tools, such as Adobe Illustrator and
CorelDRAW, enjoy immense popularity among artists
and designers. Such a wide range of applications is made
possible by the fact that vector graphics is both editable
and scalable. Editability is a high priority for artists
and designers who wish to conveniently produce visual
content with user interaction.

Since imaging devices typically produce raster im-
ages, image vectorization remains an important means
for generating vector-based content. A recent trend in
vector graphics research focuses on developing scal-
able (resolution-independent) representations of full-
color raster images. One long-lasting challenge on this
front is to make vectorized images easily editable so
that artists and designers can incorporate them into their
artwork. Since a full-color raster image typically has
significant pixel-level detail and not all of this detail
needs to be preserved in the abstracted version, a second
challenge is to let users easily choose a desired level of
detail for a vectorized image.

In this paper, we introduce a vector image represen-
tation to meet the aforementioned challenges. In our

e Z. Lino, D. Forsyth and Y. Yu are with the Department of Computer
Science, University of Illinois at Urbana-Champaign. Y. Yu is also with
the Department of Computer Science, University of Hong Kong.

E-mail: {lino17,daf,yyz}@illinois.edu

e H. Hoppe is with Microsoft Research, Redmond, WA 98052.

E-mail: hhoppe@microsoft.com

representation, the image plane is decomposed into a
set of triangular patches with potentially curved bound-
aries, and the color signals over the image plane are
treated as height fields. A subset of the curved patch
boundaries are automatically aligned with curvilinear
features. The geometry of the patch boundaries as well
as the color variations over the patches are represented
using a piecewise smooth Loop subdivision scheme.
Such a simplicial layout of patches avoids T-junctions
and better supports feature-sensitive patch boundary
alignment. With properly defined subdivision masks, the
patch boundary curves are C? everywhere, and the color
function is at least C'' everywhere except across features
where it is discontinuous.

To offer the flexibility of multiple levels of abstrac-
tion, we also design a multiresolution vector image
representation. Different resolutions in this represen-
tation contain progressively coarser meshes, each one
acting as the control mesh of a piecewise smooth sub-
division surface. Because image features play a crucial
role in vector image representations, our multiresolu-
tion representation is feature-centric. Features are sorted
and distributed to different resolutions according to
their saliency scores. When switching between different
resolutions, we “downsample” or “upsample” features
rather than pixels. Multiple resolutions allow the user
to choose a desired level of abstraction during image
vectorization or vector image editing.

Using the piecewise smooth subdivision representa-
tion, we develop techniques to facilitate a variety of
vector image editing operations, including shape editing,
color editing, image stylization, and vector image pro-
cessing. Such editing operations effectively create novel
vector graphics by reusing and altering existing vec-
torized images. While shape editing, color editing and
image stylization can be applied to any single resolution,
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Fig. 1. A raster image converted to a piecewise smooth vector-based representation with curvilinear features. Guided
by the feature curves, a multiresolution vector image pyramid enables intuitive editing of the resulting vector graphics.
Left: Original image. Middle left: Subdivision surface control mesh for vectorization. Middle right: Magnified (4x) local
view of the vectorized image. Right: Combined effects of shape editing, color editing and stylization on the vector

representation.

vector image processing involve inherently hierarchical
operations that affect multiple levels simultaneously.

We summarize our contributions in this paper as
follows.

o We introduce a new vector image representation
based on piecewise smooth subdivision surfaces. It
is the first work that applies subdivision surfaces to
modeling image with discontinuity curves. The fact
that this representation automatically provides the
desired continuity conditions is particularly useful
for both vectorization and subsequent vector editing
operations. Due to its simplicity and elegance, this
representation is a unified and flexible framework
that may find many other uses in vector image
representations.

o This work supports a novel feature-oriented mul-
tiresolution vector image representation. Unlike tra-
ditional multiresolution mesh representations for
shape editing, the most important motivation of
our multiresolution representation is not facilitating
vector image editing, but providing multiple levels
of visual abstraction. According to their own prefer-
ences, users may choose different levels as the final
vectorization result.

o This is also the first work that focuses extensively
on vector image editing and processing. Our rep-
resentation lets us process vector images directly,
and achieves novel results different from such op-
erations on raster images. Research in this direction
is significant because it directly processes vector
images without the need to go through any inter-
mediate raster image representations. We expect this
work to stimulate further research on processing of
vector image representations.

2 RELATED WORK

There exists extensive previous work on vectorization of
non-photographic images [17], [18], [31], [32], which in-
clude fonts, clip arts, maps and line drawings. However,
in this paper we focus on photographic images. Existing

vectorization techniques for full-color raster images fall
roughly into three categories.

Triangulations A few algorithms have been pro-
posed based on constrained Delaunay triangulation [16],
[22], [29]. In triangulation-based representations, each
curvilinear feature needs to be approximated by many
short line segments. Yet, these are still not resolution-
independent because the differences between a smoothly
curved feature and a polyline with only C? continuity at
the vertices become more obvious when magnified. Our
technique overcomes this problem by fitting subdivision
curves to patch boundaries. Such subdivision curves
have C? continuity.

Parametric patches Techniques involving higher-
order parametric functions, such as grids of Bézier
patches [12], [25] or Ferguson patches [30], aim for
a more editable and flexible vector representation. A
vectorization technique based on optimized gradient
meshes was introduced in [30], where manual mesh
initialization is required to align mesh boundaries with
salient image features. Such user-assisted mesh place-
ment can be time-consuming for an image with a large
number of features. Gradient meshes are defined to be
smooth everywhere, except at holes as introduced in
[21]. While color discontinuities can be approximated
by introducing degenerate quads or foldovers, this is
less convenient than a general network of tear curves.
In addition, the rectangular arrangement of patches in
gradient meshes hinders a highly adaptive spatial lay-
out, making it challenging to align color discontinuities
with image features. In comparison, our simplicial layout
makes it easier to adaptively distribute patches and auto-
matically align patch boundaries with all curvilinear fea-
tures. Although the work in [12] uses triangular Bézier
patches, it does not offer multiple levels of abstraction
and its reconstructed color signals lack C! continuity
across non-feature region boundaries.

PDE solutions A third category of techniques use a
mesh-free representation. Diffusion curves [24], rely on
curves with color and blur attributes as boundary con-
ditions of a diffusion process. The final solution of this



diffusion process defines the color variations of a vector
image. This technique is particularly well suited for
interactive authoring of vector graphics. However, it has
a few limitations. First, diffusion curves are not coupled
together by definition, which makes it hard to perform
some vector image editing operations like region-based
color or shape editing. In comparison, our technique
builds a network of curved patches to better support
vector image editing and signal processing. Second, dif-
fusion curves focus primarily on discontinuity curves —
they do not maintain detail between those sharp discon-
tinuities. In contrast, our representation can approximate
detail between the curves because we optimize the colors
of interior vertices. Actually, our “unsimplified” mesh
exactly reproduces the original image.

3 VECTOR IMAGE REPRESENTATION

Subdivision approach We consider color variations in
a raster image from a geometric perspective, treating
each color channel as a height field over the 2D image
domain. Thus, an image with three color channels is
associated with a 2D surface in 5D space. Because an
image has color discontinuities (i.e. features), we adopt
a piecewise approximation. The image domain is parti-
tioned into regions, each defining a locally smooth sur-
face patch. Specifically, we define the complete piecewise
smooth surface (spanning the full image domain) by
adapting a piecewise smooth subdivision scheme [10],
[11] as follows.

The subdivision scheme of Loop [11] defines a smooth
(C*) surface as the limit of a subdivision scheme applied
to a control mesh M = M?". The subdivision step M" —
M7+ refines the mesh M" by (1) replacing each triangle
by four triangles and (2) computing vertex positions of
MTt1! as affine combinations of nearby vertices in M",
according to a set of subdivision masks. Each vertex in
MTT1 is either a vertex point or edge point, depending on
whether it corresponds to a vertex or edge in M", and the
associated subdivision masks are shown in Figure 2(a,e).

In our setting, the control mesh is a 2D triangulation
of the image domain, in which each vertex is a 5-
dimensional vector (z,y,r, g, b). The effect of subdivision
is to smooth both the 2D geometric positions and the 3D
color coordinates. After subdivision, each triangle in the
control mesh M" becomes a triangular region, generally
with curved boundaries, and the color function is at least
C" across all such boundaries.

The scheme of [10] extends subdivision to allow sur-
face creases and corners, where the surface is continuous
but not smooth. This is achieved by tagging control
mesh edges as either smooth or crease'. However, for our
purposes this is insufficient because the resulting surface
is still everywhere continuous.

Discontinuous subdivision To model discontinuous
functions, we further extend subdivision by introducing

1. We use the terminology “crease” rather than

clearer our further generalization.

“sharp” to make

a third type of edge, a tear, which has the effect of
splitting each adjacent vertex into two vertices (Fig-
ure 2(d,g)). These two vertices share the same z, y spatial
coordinates, so that the triangulation maintains a bijec-
tion onto the image domain. However, the two vertices
may have different r, g, b color coordinates, so as to break
color continuity.

A chain of tear edges is called a tear feature, and a chain
of crease edges is called a crease feature. In this paper we
consider only tear features, because their associated dis-
continuities form the most prominent elements in vector
graphics images. Vectorizing crease features, which are
more subtle, is left as future work.

In our scheme, vertices have four types: smooth, crease,
tear, and corner. A smooth vertex is a vertex incident only
to smooth edges; crease and tear vertices are adjacent to
exactly two crease and tear edges respectively; corner
vertices are located at all other configurations, including
feature endpoints. To fix the rectangular image bound-
ary, the four corners are marked as corner vertices, and
all perimeter edges are marked as crease edges.

Figure 2 shows the complete set of subdivision masks.
The corner vertex mask ensures its position does not
move after subdivision. The crease and tear masks both
subdivide the feature curve to produce a cubic B-spline
curve. The tear masks differ in that they act indepen-
dently on the duplicated vertices across the tear.

In practice we apply two or three subdivision steps
and then push the subdivided vertices to their limit po-
sitions (using a set of limit masks, not shown). Although
the mesh could be further subdivided, we find that it
already starts to form a sufficiently accurate piecewise
linear approximation.
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Fig. 2. Subdivision masks. (a-d) Subdivision vertex
masks for smooth, corner, crease and tear vertices. (e-

g) Subdivision edge masks for smooth, crease and tear

edges. In (d) and (g) the parallel vertex-pairs each con-

nected by a gray dashed line are “split” vertices along the

tear feature. In (a), a(n) = (2 + } cos 2%)? + 2 where n is
the vertex valence.

The goal of vectorization (Section 4) is to (1) optimize
the vertex positions along this feature to align the re-
sulting subdivided feature curve with the raster image



discontinuities, and (2) optimize the vertex colors such
that the piecewise smooth subdivided mesh best fits the
image color function.

In this vector graphics setting, the piecewise smooth
subdivision approach offers a number of benefits. First,
it represents both the shapes of image features and
the variations of color signals in a unified, resolution-
independent representation. Second, it achieves the de-
sired spatial and color continuity conditions by construc-
tion, without requiring constraints over the degrees of
freedom, namely: (1) the subdivided feature curves are
everywhere C?, and (2) the color function is everywhere
C1, except across feature curves where it is C~! (Ac-
tually, it is also C? away from extraordinary vertices,
which are those with valence other than 6.). Because
the vector image will be subject to interactive user
manipulation, these properties guarantee that no matter
how the user deforms the control meshes, feature curves
will remain geometrically smooth, and the color field
will remain smooth everywhere except across features.
In comparison, the piecewise color representation in [12]
may give rise to undesired visible seams across region
boundaries.

Multiresolution representation While our vector im-
age representation involves a sequence of progressively
finer meshes, these meshes all share the same set of
features — the same amount of detail. In Section 5, we
extend this with a multiresolution structure, in which
each resolution level is itself a vector image, and contains
a different level of detail.

4 SINGLE-LEVEL IMAGE VECTORIZATION

Our image vectorization pipeline consists of four major
stages: feature detection, initial control mesh construc-
tion, mesh simplification, and color optimization.
Feature detection is performed through Canny edge
detection and image segmentation. Detected Canny
edges are thinned to 1-pixel wide, and broken pieces
are linked together to form longer features [19]. If image
segmentation (we use GrabCut [1] in our experiments)
is performed to partition an image into regions, region
boundaries are always closed and are also treated as
features. The initial control mesh is created as a regular
grid, with one vertex per image pixel. Additional vertices
are introduced in the mesh at subpixel locations based on
the detected features, and the mesh is locally retriangu-
lated appropriately. All edges along features are marked
as tear edges. Initial mesh construction and subsequent
feature-preserving mesh simplification follow the work
of [12] except that we use subdivided feature curves
to fit image features. Note that more advanced feature
detection method, such as the one in [28], could be
adopted to achieve better subpixel accuracy without
affecting our overall vectorization pipeline. We would
like to leave this as a topic for future investigation.
Mesh simplification Because the mesh is initially
very dense, for efficiency we perform simplification us-
ing the quadric error metric of [4], treating the color

channels as geometric height fields. To preserve the
topology of feature tears, each tear vertex is only permit-
ted to collapse with an adjacent vertex on the same tear.
And to carefully preserve the geometric fidelity of the
feature curves, after each collapse involving a tear vertex
we solve an optimization to locally refit the subdivided
feature curve to its associated feature in the raster image.
This geometric optimization is formulated to minimize
the summed squared distances between vertices of the
densely subdivided mesh and their target positions:

N,
E=>"|x; - Vyj,| ¢))

j=1

where V is a 2xN_. matrix of the N, unknown control
vertices, and N, is the number of affected vertices in the
subdivided mesh. Vector x; is the target position of the
j-th subdivided vertex, and Vy, is the expression for
the limit position of the j-th subdivided vertex in terms
of the control vertices. The target position x; for a tear
vertex is its projection onto the original feature curve;
for all remaining vertices it is their current position.
Minimizing E is a sparse linear least-squares problem
since the local nature of subdivision rules ensures that
each y; is a sparse vector. If the maximum fitting error
along the new curve exceeds one pixel, the edge collapse
is rolled back. Also, we prevent foldovers by disallowing
edge collapses that result in flipped triangles. Once the
number of vertices in the control mesh has been reduced
to a predefined threshold, mesh simplification terminates
and the structure of the control mesh becomes final.
Color optimization Because the mesh simplification
process is greedy and heuristic, the solution is far from
optimal. In fact, the colors in the simplified mesh do
not take into account subdivision at all. The final step
globally optimizes the colors of the control mesh vertices.
We use a formulation similar to (1), but this time over
3D colors rather than 2D positions. Thus V becomes a
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Fig. 5. Cross-boundary continuity: comparison with [12].
Left: Original image. Middle: Contrast-enhanced view of
the vectorization of the local rectangular region by [12]
(upper) and our method(bottom). Right: 3D reconstructed
surface (gray-scale as height) of the indicated local re-
gions from the images in the middle. Note the color and
geometric gradient discontinuities across patch bound-

aries from the result by [12] in the upper middle and upper
right.
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Fig. 3. Vectorization pipeline. (a) Original image. (b) Detected curvilinear features. (c) Control mesh of the
reconstructed subdivision surface. (d) 3D view of the optimized control mesh. (e) Optimized control mesh subdivided
twice. (f) Rasterization result of the reconstructed vector image (1.40/pixel mean reconstruction error using the control

mesh of 303 (0.3%) vertices and 369 triangles).
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Fig. 4. Two vectorization examples. The left example uses a control mesh of 1725 (1%) vertices and 2470 triangles
with mean reconstruction error 1.48; the right example shows a magnified view (8x) of a local region of a flower pin
using our vector representation and a comparison to the same scale magnification of the raster image using bicubic

interpolation.

3xN,. matrix containing all control vertex colors, and N
is the total number of vertices in the subdivided mesh.
The target color x; is the bilinearly filtered image color at
the 2D location of the corresponding subdivided vertex.

Because color values may vary significantly across
image features, missampling near features in the original
raster image can result in disturbing results. Thanks to
the one-pixel error bound in the earlier feature fitting, we
need only pay special attention to vertices in a one-pixel
band adjacent to the features. We obtain the target colors
of these vertices as follows. For tear vertices themselves,
the target color is assigned from the closest pixel on
the feature. The remaining vertices that lie within one
pixel from the features are referred to as border vertices.
Their target colors are initially set to be undefined, and
we perform hole filling to propagate correctly sampled
colors from nearby interior vertices and tear vertices.
Hole filling starts from the boundary of the holes and
iteratively extends into the interior of the holes. The
target color value of a vertex, whose color is previously
undefined, is interpolated from the target values of its
neighboring known vertices.

We solve the resulting large sparse linear system using
TAUCS [3].
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Fig. 6. Representation compactness compared to [21].
Left: Original image. Right: Vectorization result with mean
error 2.13 using our method. Our subdivision-based rep-
resentation takes up 14.0KB of storage after zip com-
pression; the gradient mesh representation ( [21]) needs
9.4KB storage with the same mean error, while JPEG
compression with a comparable quality requires 20KB.

4.1 Results and Comparisons

Examples of vectorization and magnification can be
found in Figures 3 and 4. To demonstrate the quality
and compactness of our vector image representation,
we have compared our method with those in [12], [21].
As shown in Figure 5, our result is at least C' across
non-feature patch boundaries whereas the result by [12]
exhibits color discontinuities across such boundaries.
Figure 6 indicates that the amount of storage required
by our method is comparable to gradient meshes.
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Fig. 7. Multiresolution abstraction. Top (a-d): Original
raster image, the finest, intermediate, and coarsest levels
of abstraction. Bottom (left to right): Cropped views of the
control mesh, subdivided features, and vectorized image
in three levels of abstraction;

5 MULTIRESOLUTION VECTOR IMAGES

There are no universal criteria regarding the optimal
density of features in a vectorized image. Denser features
make the vectorized version more faithfully represent
the original raster image while sparser features provide a
higher level of abstraction, which could be more visually
appealing. We introduce a feature-oriented multiresolu-
tion vector image representation to address this problem.
Such a representation contains different levels of details
at different resolutions, and thus provides vector-based
approximations of a raster image over a spectrum of
granularity and abstraction. It has the flexibility that
users can choose their preferred level of abstraction in a
vector image.

Our multiresolution vector images are based on fea-
tures as basic building blocks due to their importance in
vector representation. Thus each resolution represents a
distinct level of abstraction of the original raster image
(Figure 7). The multiresolution vector images are con-
structed as follows.

We first gather the set of features in the original image.
Each feature f is assigned a saliency score that is a

weighted summation of its length P(f) and the average
contrast (gradient magnitude) C(f) across the feature:

S(f) = P(f) +w C(f), @

The user-configurable parameter w determines the rel-
ative importance of length and contrast. In addition,
we allow users to interactively adjust the saliency of
semantically important features. by interactively over-
riding their assigned resolution.

We uniformly group features into L subsets in de-
scending order of saliency. This lets us define a sequence
of nested feature sets {F;}L , where F; C F; if j > i.
In our multiresolution representation, we generate a
single-level vector representation S; for each feature
set Fy...F;_; such that S; has C! continuity every-
where except for the subset of region boundaries aligned
with F; across which it has C~! continuity.

Thus, we begin at level 0 with the finest control mesh,
which contains all features. Level [ is constructed from
level [—1 by first removing the subset of features Fj_1\ F].
Recall that every control vertex along a feature is paired
with another vertex on the opposite side of the feature,
and these vertices have the same z- and y-coordinates
but different color coordinates. When a feature is elim-
inated, the open boundary it creates becomes sealed,
and every pair of vertices on the boundary is merged
into a single vertex with an averaged color. Second,
mesh simplification is performed to eliminate a certain
percentage of the vertices. In the current implementation,
we remove 50% of the vertices between two consecutive
levels by default. During this stage of simplification, each
merged vertex on a just-eliminated feature is allowed
to collapse with any other vertex, while a vertex on a
remaining features is constrained to collapse only with
other vertices on the same feature.

Note that w and L are heuristic parameters. In our
experiments we always use default values, w = 2 and
L = 3. However, users can choose to assign them
alternative values through an interface.

6 VECTOR IMAGE EDITING

Editability is the main reason that vector graphics is
widely used in content design. Traditional vector graph-
ics is represented with high-level geometric primitives
with adjustable parameters so that editing operations
can be conveniently achieved. In this section, we demon-
strate that our new vector representation for photo-
graphic images also exhibits such an advantage and
supports a variety of editing operations. Note that even
though most editing operations addressed here can al-
ready be performed on raster images, our goal is to
perform direct vector image processing without going
through any intermediate raster images.

6.1 Shape Editing

Shape editing of an image object is achieved by de-
forming a part of the control mesh corresponding to
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Fig. 8. Shape editing. Top row: Three shape editing
results on a given vector image. Bottom row: Original
control mesh for (a) and its deformation for (d) using six
indicated mouse interactions.

the image object at an appropriate level of the multires-
olution vector images. We use the as-rigid-as-possible
shape manipulation technique in [7] to solve for a new
configuration of the control vertices given user-supplied
deformation constraints. A deformation constraint is a
pair of original and new control vertex positions. Given
one or more deformation constraints, the technique in [7]
is able to solve for new positions of the remaining control
vertices by minimizing the overall mesh distortion.

We have implemented a simple shape editing in-
terface. Users can provide deformation constraints by
dragging a single vertex or a feature. When a feature
is selected, the user can partially deform the feature or
completely relocate the entire feature. In the former case,
the mouse click position is the center of deformation
and the closest feature is selected. The displacement
of any vertex on the selected feature is based on its
initial distance to the center of deformation using a
Gaussian kernel. Users can specify the variance (02) of
the Gaussian kernel to adjust the region of influence.
In the latter case, the user can translate and/or rotate
a selected feature to define the new positions of the
vertices on the feature.

Figure 8 shows large-scale shape editing of an object
silhouette to convincingly alter the perception of its
3D shape. Figure 10 shows shape editing (and color
editing, introduced in the next subsection) of multiple
features in the same vector image to create a new fa-
cial expression. Note that such intuitive feature-oriented
shape editing cannot be conveniently achieved with pre-
vious vector representations for photographic images.
Diffusion curves [24] and individual gradient meshes
in [30] are not coupled together by definition. Modern
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Fig. 9. Color editing. (a) Input vector image. (b) Color
editing in the BLEND mode. (c) Input vector image 2. (d)-
(e) Color editing in the TRANSFORM mode.

shape editing techniques, such as the one in [7] cannot
be easily applied without significant enhancements to
such representations. The automatic technique in [21]
performs adaptive grid subdivision near image features
but does not exactly align vertices with features, making
high-precision feature selection and relocation hard to
achieve. Although there is a base mesh holding all the
Bézier patches together in [12], patch boundaries are
individual Bézier curves. During shape deformation,
the continuity between adjacent curve segments cannot
be guaranteed without enforcing additional constraints
among their control vertices.

6.2 Color Editing

With the mesh representation and explicit feature struc-
tures, color editing can be conveniently performed by
defining region selection tools and then manipulating the

Fig. 10. Combined shape and color editing. Upper: (a)
raster image; (b) control mesh of the extracted foreground
layer; (c) foreground object vectorization; (d) shape and
color editing to the object. Bottom left: Vector image input.
Bottom right: Shape and color editing on the vectorized
image. Shape editing includes deforming the mouth and
eye brows, and enlarging the eyes. Color editing is per-
formed on the lips.



color channels of the selected control vertices. Similar to
the vertex and feature selection tool in shape editing,
we support selecting a single vertex or an entire feature.
Users can further specify a propagation radius to select
a local region around the selected vertex or feature.

For color manipulation, users specify the rgb values of
a new color that will affect the color of the selected vertex
or feature. There are of course many transformation
operators that one can apply. In our prototype we have
explored two such operators, BLEND and TRANSFORM.
In the BLEND mode, the final color is computed as
a linear blend of the original and new colors. In the
TRANSFORM mode, a seed vertex closest to the mouse
click location is first chosen and a 3x3 diagonal color
transform matrix is computed using the new color and
the original color of the seed vertex. This transform
matrix is then applied to all vertices within the selected
local region. Both color editing modes preserve the
original color variations in the selected region. Figure
9 shows color editing results achieved with BLEND and
TRANSFORM operators.

6.3 Abstraction and Stylization

Our multiresolution vector images provide a sequence of
control meshes with progressive density. These control
meshes generate subdivision surfaces that approximate
the original raster image at different levels of details.
Finer levels more faithfully represent the original raster
image while coarser levels provide a higher level of
abstraction with the removal of edges with low salience.
This structure gives a natural solution to edge-aware
multilevel image abstraction, which allows users to
choose an appropriate abstraction level to display an
image for various purposes.

We further generate stylized images from multireso-
lution vector images by drawing freestyle strokes along
a subset of features (Figure 11). Stylization requires a
user-selected abstraction level and interactively selected
regions of interest where features are going to be empha-
sized with strokes. In comparison with [8], where the
input image is segmented into regions, each of which
is filled with a constant color, our results put more
emphasis on sharp image features, which are aligned
with partial region boundaries, and preserve weakened
color variations within local regions. Both methods show
visually interesting results, but with different styliza-
tion emphases. In our results, strokes are only used to
enhance features within regions of interest. Within a
region of interest, features with saliency scores higher
than a threshold are always enhanced with strokes while
features with saliency scores below the threshold are
randomly chosen to be enhanced. The width of a stroke
varies according to the length of the feature. Both ends
of a stroke are linearly tapered.

Abstraction and stylization represent another novel
application of our vector image representation. There
have been no previous attempts to use vector image rep-
resentations for such a purpose. Feature alignment and

preservation as well as the removal of high-frequency
details in our vector-based approximations are consistent
with the goal of abstraction and stylization. Our results
demonstrate that abstraction and stylization based on
vectorization can be quite effective. Our technique also
suggests a way to make smoother but edge-preserving
base images for other methods that rely on a base- and
detail-layer decomposition.

6.4 Signal Processing

It is desired to perform image processing tasks directly
on a vector-based image representation, which elimi-
nates the need to convert vector images back to raster
images. Different levels of a multiresolution vector im-
age, as introduced in Section 5, are mutually indepen-
dent. Such a multilevel structure becomes inadequate
for vector image processing tasks, such as filtering and
enhancement, which need to work with all frequency
bands simultaneously. We further enhance our multires-
olution vector image representation by storing inter-level
details. The resulting data structure is called a vector
image pyramid.

Our representation for inter-level detail in the pyra-
mid shares similarities with the multiresolution mesh
hierarchy proposed in [9], which was in turn inspired
by the Burt-Adelson image pyramid [5]. (Interestingly,
a vector image representation combines characteristics
of both meshes and images.) The idea is that during
the simplification of the original control mesh using a
sequence of elementary coarsening operations (i.e. edge
collapses), we record for each operation a detail vector
that expresses the position (or data) of the removed ver-
tex relative to the resulting coarse neighborhood. Specif-
ically, the removed vertex is predicted as a weighted
combination (relaxation) of the coarse neighboring ver-
tices, and the detail vector is the difference from this
prediction. Interested readers are referred to [5], [9] for
more details.

Some differences between our vector image pyramid
and the multiresolution mesh hierarchy in [9] are sum-
marized as follows.

e Relaxation The relaxation operation R used to
predict a vertex from its one-ring neighborhood has
weights from [2]:

w; o< 1/[[v' —v}|| and Zwl =1, (3)

=1

R(V) = i: w;Vi,
i=1

where Vv’ is the projection of v in the XY plane, which
provides a perfect parameterization of our 2.5D color
signal. The Fujiwara weights usually produce higher-
quality results in our experiments than the second-order
divided differences in [9].

e Local Frames and Detail Vectors We store 2D po-
sition displacement vectors with respect to local frames
in the simplified meshes. For color displacements, we
simply use per-channel differences with respect to the



(a) raster image (b) vector image stylization

Fig. 11. Vector image stylization examples.

(c) raster image (d) vector image stylization

(a) raster image (b) vectorization of (a)

(c) detail enhancement

(d) filtering and stylization (e) difference map: (c) - (b)

Fig. 12. Combined stylization and vector image processing results.

global frame whose z-axis is perpendicular to the image
plane.

The detail vectors and scalars in the pyramid construc-
tion process store the differences between actual signals
and their smoothly predicted version from the relaxation
operation. Within a vector image pyramid, detail signals
at finer levels accommodate relatively high-frequency
details while those at coarser levels accommodate low-
frequency details. As in [9], signal processing operations
such as low-pass, high-pass, and band-pass filtering
can be performed conveniently by appropriately editing
such detail signals. Filtering and enhancement based on
editing detail signals can be formulated as:

v = R(v) +nd(v), @

where the edited vertex v’ is obtained from its relaxed
prediction v and by scaling the precomputed detail
signal in 2D geometric coordinates and/or 3D color
coordinates. Smoothing is achieved by setting 0 <7 < 1,
and enhancement is achieved by setting 1 > 1. Setting 7
as a function of pyramid level achieves filtering effects
dependent on frequency bands.

Figure 13 and Figure 14 show two signal processing
examples. Figure 12(d) shows a combined effect of fil-
tering and stylization. These results demonstrate that
standard signal processing operations can be directly
performed on a vector image without the need to convert
it to a raster image first.

Note that signal processing operations have not been
supported in previous vector image representations.
Unlike our multiresolution vector representation, they
were not originally designed for signal processing tasks.
Comparing to raster image processing, our cut-open
mesh structure along sharp image features leads to

v e
el

Fig. 13. Signal processing using our vector image repre-
sentation. Upper left: Raster image. Bottom left: Vector
approximation. Upper middle: Low-pass filtered vector
approximation. Bottom middle: High-frequency enhanced
vector approximation. Upper right: Difference map of the
smoothed image and vector image. Bottom right: Differ-
ence map of the enhanced image and the vector image.

perfect edge-preserving smoothing without the need of
any extra treatment while the bilateral filter or other
edge-preserving raster image filtering algorithms only
partially preserve contrast across sharp edges.

7 DISCUSSION

GPU-based rasterization We rely on GPU-based ras-
terization of subdivision surfaces to achieve real-time
vector image display. Recent work on real-time surface
subdivision can be found in [33], [34]. In our experi-
ment, we implemented rasterization using CUDA [15]
on nVidia Geforce GTX275. For a display window with
a moderate size (512x512) our GPU-based rasterization



Fig. 14. Left: Original raster image. Middle: Vector image
detail enhancement. Right: Difference map due to vector
enhancement.

yields 60 frames per second. We do uniform subdivi-
sion on the control mesh and terminate when the total
number of triangles exceeds the number of pixels in the
display window. Note that a zoomed view only requires
a portion of the control mesh to be subdivided. Thus the
rendering speed is determined by the display window
size rather than the image size.

A triangle with its ordered one-ring neighborhood is
the atomic unit in our parallel implementation. Multiple
iterations of subdivision are performed on the initial
control mesh. Each iteration subdivides each of the
triangles from the previous iteration into four smaller
triangles each associated with an ordered one-ring neigh-
borhood itself. To avoid heavy data swapping between
the CPU and the GPU, we allocate sufficient global
memory on the GPU at the beginning and manage the
memory layout to make only one data swap during the
whole subdivision process. Shared memory is utilized
to achieve high speed data access. The per-block shared
memory size is the major hurdle to achieving a high level
of parallelization. In our experimental configuration, 32
threads are created and executed simultaneously with
synchronization per block and a total of 240 blocks are
allocated.

Vector representation statistics Table 1 summarizes
the control mesh complexity of the vector images used in
the paper except for the ones that have been mentioned
in the context.

Limitations There exist a few aspects about our algo-
rithm and implementation that deserve further investi-
gation. Our vector image representation currently only
supports a single foreground layer. While this assump-
tion does not negatively impact most of the operations,
it does affect shape editing. Separating different objects
in an image onto distinct layers enables a user to alter
the shape of each object independently. Issues related to
multiple layers include how to automatically or semi-
automatically recognize layers in an image and how
to fill gaps created when two overlapping layers are
altered differently. Another limitation is that our cur-
rent implementation does not support the insertion of
new features into a vectorized image. We expect this
can be accomplished in a straightforward way by first
performing intersection tests between the new features
and the triangles in the control mesh followed by re-
triangulation around the intersections.
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TABLE 1
Complexity of vector image control meshes: ratio of
vertices relative to original unsimplified mesh; number of
vertices, triangles, and features; optimization time in
seconds. Statistics for images girl, apple, horse, grapes
are at the finest level. The number of vertices is halved at
each level from the preceding finer level.

Image (Fig. No.) | Ratio Vert Tri Feat  Opt time
flowers (1) 0.015 3000 3612 174 3.0
flower pin (4e) 0.01 207 239 17 0.37
peppers (6) 0.0125 2294 3731 48 9.8
girl (7) 0.05 6453 9356 306 5.9
pepper2 (8) 0.015 1960 2518 182 6.3
banana (9a) 0.01 883 1258 20 3.1
tulip (9¢) 0.03 3313 5342 63 3.0
flower2 (10b) 0.0125 426 570 15 43
face (10 bot.) 0.05 3462 5998 54 2.9
Italy (11b) 0.04 5741 7807 303 5.1
goldfish (11d) 0.025 6766 8753 594 6.1
grapes (12) 0.08 9210 15325 153 8.2
apple (13)) 0.08 11308 21267 24 11.7
horse (14) 0.08 12966 22366 113 13.1

8 CONCLUSIONS

In this paper, we have introduced an effective vector-
based representation and its associated vectorization
algorithm for full-color raster images. Our representation
is based on a triangular decomposition of the image
plane and piecewise smooth Loop subdivision surfaces.
We have also designed a feature-oriented vector im-
age pyramid to support multiple levels of abstraction.
Our multiresolution representation facilitates a variety
of editing operations performed directly over a vector
image. Experiments and comparisons have indicated
that our representation and the associated vectorization
algorithm can achieve high visual quality and better
support editing operations than existing methods.
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