
Volume xx (200y), Number z, pp. 1–12

Distributed Poisson Surface Reconstruction

M. Kazhdan1† and H. Hoppe

1Johns Hopkins University, USA
†Corresponding author: misha@cs.jhu.edu

Abstract
Screened Poisson surface reconstruction robustly creates meshes from oriented point sets. For large datasets, the technique
requires hours of computation and significant memory. We present a method to parallelize and distribute this computation over
multiple commodity client nodes. The method partitions space on one axis into adaptively sized slabs containing balanced
subsets of points. Because the Poisson formulation involves a global system, the challenge is to maintain seamless consistency
at the slab boundaries and obtain a reconstruction that is indistinguishable from the serial result. To this end, we express the
reconstructed indicator function as a sum of a low-resolution term computed on a server and high-resolution terms computed
on distributed clients. Using a client-server architecture, we map the computation onto a sequence of serial server tasks and
parallel client tasks, separated by synchronization barriers. This architecture also enables low-memory evaluation on a single
computer, albeit without speedup. We demonstrate a 700 million vertex reconstruction of the billion point David statue scan in
less than 20 minutes on a 65-node cluster with a maximum memory usage of 45 GB/node, or in 14 hours on a single node.

CCS Concepts
• Computing methodologies → Mesh geometry models; Reconstruction;

1. Introduction

Reconstructing surfaces from 3D points is a well studied prob-
lem in computer graphics and computer vision, with diverse ap-
plications (e.g., LIDAR scenes, biomedical imaging, cultural her-
itage capture). Numerous surface reconstruction approaches have
been explored, including those leveraging computational geome-
try and machine learning techniques, as reviewed in Section 2.
Among these, the screened Poisson Surface Reconstruction algo-
rithm (sPSR) [KBH06,KH13] has been commonly used in the com-
munity because it is both global (providing robustness in the pres-
ence of noise and missing data) and efficient (with time and space
complexity linear in the input size).

However, as the rate at which 3D point clouds grow outpaces the
processing and memory capacities of commodity PCs, the Poisson
surface reconstruction algorithm has begun to lag in its ability to
generate surfaces at large scales. Although recent implementations
have leveraged the parallelization available on modern CPUs, this
has only afforded a small (e.g. 4× or 8×) speedup and fails to ad-
dress the issue of memory bottleneck.

For faster execution, the algorithm must be distributed among
several parallel processors. In typical compute clusters, each node
has local memory and storage and the nodes communicate via fast
networks. Supercomputers often offer large memory spaces, but
these are usually Non-Uniform Memory Access (NUMA) archi-
tectures in which memory is partitioned among multiple processors
such that access to nonlocal memory is significantly more costly. In

either case, efficient solutions involve partitioning the problem into
distributed computations that focus on local data.

We present an efficient distributed version of the screened Pois-
son surface reconstruction algorithm. The distributed algorithm re-
sults in near-linear speedups on a compute cluster with 65 client
nodes. Additionally, the same algorithm can be executed serially
on a single processor, e.g., allowing the reconstruction of a 700
million-vertex mesh from 1 billion points on a 64 GB PC.

2. Related work

Surface reconstruction Several computational geometry meth-
ods create triangle meshes that interpolate all or a subset of
the data points [ABK98, BMR∗99]. For resilience to noisy data,
it is common to define an implicit surface that only approxi-
mates the points, often in the form of a signed-distance function
[HDD∗92,CL96a,CT11] or an indicator function [KBH06,KH13].
Recent work defines implicit functions with the aid of machine
learning [WSS∗19, BGKS20, RGA∗21, CTFZ22].

Out-of-core geometry processing Many techniques are able to
operate on models larger than main memory by partitioning and
traversing space using cubical cells or slices [IG03, NNSM07,
AGL06]. In particular, streaming computations advance through
space using a sliding in-core window [IL05, ILS05, VCL∗06,
ILSS06, BKBH07].

submitted to COMPUTER GRAPHICS Forum (8/2023).

https://orcid.org/0000-0002-6904-2167
https://orcid.org/0000-0002-9699-2539


2 M. Kazhdan & H. Hoppe / Distributed PSR

Out-of-core surface reconstruction Some reconstruction ap-
proaches are naturally adaptable for out-of-core evaluation because
their data access patterns are localized. The ball-pivoting algo-
rithm of [BMR� 99] is implemented out-of-core by partitioning the
domain into slices. The VRIP accumulated signed distance �eld
of [CL96b] is applied to large volumes by independently process-
ing blocks of the volume and stitching together the reconstructed
pieces [LPC� 00]. Similar strategies have been used to process mod-
els on the limited memory available to GPUs [CBI13, NZIS13].
Reconstruction schemes based on local neighborhood �tting such
as [HDD� 92, ABCO� 01, OBA� 03] can be adapted to operate out-
of-core [Paj05]. Floating scale surface reconstruction [FG14] and
�eld-aligned online surface reconstruction [STJ� 17] are other local
formulations that are well suited for out-of-core, distributed com-
putation. In contrast, methods that cast surface reconstruction as a
global minimization [KH13, UB15] are challenging to evaluate as
a distributed computation.

Performant Poisson surface reconstructionFocusing speci�-
cally on Poisson surface reconstruction, there has been early work
on adapting the implementation to be more time and/or memory ef-
�cient. The key idea behind these approaches is to leverage the lo-
cality of the computation performed by the Poisson surface recon-
struction algorithm, allowing different processors to solve for in-
dependent solution variables simultaneously [ZGHG08, BKBH09]
and supporting streaming computation so that only a small sub-
set of the data-structure needs to be memory-resident at any given
time [BKBH07].

Our proposed approach is most similar to the work of Bolithoet
al. [BKBH09] which distributes the reconstruction problem among
multiple clients by separately considering the low- and high-
resolution components of the problem. The entire low-resolution
problem is solved by each of the clients, while the high-resolution
problem is spatially partitioned along a 1D axis, with each client
re�ning the solution within its own volumetric “slab”. Consistency
across slab boundaries is realized in two ways. First, slabs are de-
�ned to be overlapping. And second, data near the partition bound-
aries is synchronized and blended between adjacent clients.

While our approach borrows some of these ideas, it differs in a
number of fundamental ways.

� It has space and time complexityO(N=C), with N the number
of points andC the number of clients.

� It supports the use of an adaptive octree at the coarse resolu-
tion, allowing the coarse octree to be have �ner depth, thereby
supporting more clients and �ner-granularity load balancing.

� It minimizes the communication between the clients, so that
only high-resolution information immediately at the slab bound-
aries needs to be shared.

� It is guaranteed to produce a watertight surface, even in the pres-
ence of machine-precision errors that result in arithmetic opera-
tions failing to be associative or commutative.

As source code for the method of Bolithoet al. is unavailable
we built our distributed implementation from the ground up. This
has the advantage of allowing us to integrate more recent develop-
ments in the Poisson reconstruction algorithm (e.g. incorporating a
screening energy for better �t, using a linear-time implementation

of the multigrid solver instead of the initial log-linear implementa-
tion, and discretizing the problem using the sparser system derived
from �rst-order B-splines instead of the initial second-order B-
spline discretization). Unfortunately, it also prevents a direct com-
parison of the two methods.

3. Review

Distributed Poisson Surface Reconstruction (DPSR) adapts both

1. screened Poisson Surface Reconstruction (sPSR) — to compute
the implicit function overdistributedclients, and

2. adaptive octree isosurfacing — to ensure that slab-adjacent
clients create isosurfaces whose level-set curves areidenticalat
the shared boundary.

We brie�y review the implementations of both techniques.

3.1. Screened Poisson surface reconstruction

Given a set of oriented pointsf (pi ;ni)g with positionspi and nor-
malsni , sPSR [KH13] proceeds by interpreting the points as a vec-
tor �eld ~V : R3 ! R3 and �nding the indicator functionc minimiz-
ing the energy:

E(c) =
Z

R3






 r c � ~V








2
+ a å

i
(c(pi) � 0:5)2 :

Discretizing using a B-spline basis de�ned over an octreeO, this
reduces to solving a linear system

Ax = b;

where both the solution vectorx and the constraint vectorb are
elements ofRjOj . This system is solved ef�ciently in a coarse-to-
�ne manner using the hierarchical structure of the octree.

The implementation has (roughly) the following steps:

sPSR.1 The input points are inserted into an octree of a speci-
�ed reconstruction depthD. Each octree nodeo 2 O stores the
weighted samplef po;no;wog consisting of the average sample
position po, average sample normalno, and a weightwo equal
to the sample count.

sPSR.2 The weighted samples are used to construct a density es-
timator.

sPSR.3 Each weighted samplef po;no;wog contributes to the
vector �eld ~V by “splatting” the weighted vectorwono at posi-
tion po, using a kernel whose width falls off with estimated local
sampling density. Simultaneously, the sum of sample weights is
accumulated.

sPSR.4 The value of the screening parametera is de�ned in terms
of the sum of the sample weights.

sPSR.5 The constraint vectorb 2 RjOj is computed using both
the vector �eld~V and the weighted samples.

sPSR.6 Proceeding in a coarse-to-�ne manner, a Gauss-Seidel
solver relaxes the B-spline coef�cientsx 2 RjOj , which de�ne
an implicit functionc.

sPSR.7 The average of the implicit function over the samples, ¯x,
is computed. (Though we expect this value to be approximately
0:5, it may deviate when the screening weighta is small.)

sPSR.8 A polygonal mesh approximating the isosurfacec� 1(x̄)
is computed as described below.

submitted to COMPUTER GRAPHICSForum(8/2023).



M. Kazhdan & H. Hoppe / Distributed PSR 3

3.2. Unconstrained isosurface extraction

Given an unconstrained octree
and an implicit function, Kazh-
dan et al. [KKDH07] compute a
discrete approximation of the iso-
surface in the form of a polygonal
mesh whose vertices and edges lie
on the octree leaf cells. The ap-
proach processes the octree leaf
nodes in a �ne-to-coarse order,
de�ning the intersection of the
surface with a leaf node by induc-
tion on the dimension of the cells.
The inset shows a visualization, for two face-adjacent octree nodes,
where the node on the left is more re�ned than the one on the right.

Iso.0 The implicit function is evaluated at the corners of the oc-
tree leaf nodes (blue and red circles, indicating the sign).

Iso.1 Iso-vertices are computed at leaf-node edges (hollow cir-
cles). These are obtained by computing the level-set crossing
given the edge's corner values (and gradients) when there is no
�ner node incident on that edge. Otherwise the iso-vertices from
the incident �ner leaf nodes are associated with each edge (bot-
tom row).

Iso.2 Iso-edges are computed at leaf-node faces (gray edges).
These are obtained by linking iso-vertices assigned to the edges
when there is no �ner node incident on the face. Otherwise the
iso-edges from the incident �ner leaf nodes are associated with
the face (bottom row).

Iso.3 Iso-polygons are computed at leaf nodes. These are ob-
tained by linking the iso-edges from the faces into polygons.

4. Approach

To distribute the computation of both Poisson reconstruction and
isosurface extraction among multiple clients, it is natural to di-
vide the problem spatially, assigning each client a region of the 3D
space. The main challenges are (1) that the surfaces reconstructed
in the individual client computations must be identical along the
region boundaries so as to not exhibit visible artifacts (e.g., topo-
logical cracks or shading discontinuities) and (2) that the union of
the clients' reconstructions should match the surface reconstructed
using the traditional non-distributed approach.

4.1. Slab-based partition

As in [BKBH09], we partition the 3D space using adaptively sized
slabs along a single axis, as illustrated in Figure 2. The partitioning
axis is selected to be the “long axis” of the input points. Speci�-
cally, we measure the extent of the point set along multiple direc-
tions and rotate the samples so that the direction of longest extent
aligns with thez axis. We also translate and uniformly scale the
point set to �t into the unit cube[0;1]3.

To distribute the computation amongC clients, we partition
space along thez axis into C slabs, each containing a similar
number of input points (Figure 1(a)). We constrain the location
of these slab boundaries to align with the cells of a coarse oc-
tree of depthd, whereC < 2d. Thus, we start by dividing space

Figure 1: 2D illustration of assigning input points to 16 regu-
lar intervals and partitioning the intervals into 4 adaptively sized
slabs.

Figure 2: Reconstruction of the “David” at depth D= 15 using
C = 64 clients. The red curves reveal the partition of the domain
space into adaptively sized slabs using a dynamic-programming
scheme. A high density of clients is assigned to the head despite its
small surface area because that region is more densely sampled.

along thez axis into 2d regularintervals, i
2d � z � i+ 1

2d , for 0 �

i < 2d. We then determine a partition of the intervals intoC slabs

Sc =
n

(x;y;z)
�
�
� z2

h
ic
2d ; ic+ 1

2d

io
, with 0 � c < C and 0= i0 < i1 <

� � � < ic < � � � < iC = 2d, such that the number of points falling
within each slab is balanced. Ultimately, clientc is responsible for
reconstructing the surfaceSc within its own slab, and we require
that successive surfaces are continuous across theslicecorrespond-
ing to their shared boundary plane:

Sc \
�

(x;y;z)
�
�
� z=

ic+ 1

2d

�
= Sc+ 1 \

�
(x;y;z)

�
�
� z=

ic+ 1

2d

�
:

All large results in this paper use a coarse octree of depthd = 8.
Thus, there are 256 regularz intervals. Figure 2 shows an adaptive
partition of these intervals intoC = 64 slabs.

4.2. Connected isosurface

The implicit functions generated by each pair of successive clients
may not match precisely along their shared boundary slice. If iso-

submitted to COMPUTER GRAPHICSForum(8/2023).



4 M. Kazhdan & H. Hoppe / Distributed PSR

Figure 3: Challenges in obtaining a connected, seamless surface using a computation distributed over slabs (shown in red): (a) Extracting
isosurfaces independently per slab leaves large gaps between reconstructed mesh parts; (b) De�ning a shared 2D slice function corrects the
gaps but leaves topological cracks (where the octree is re�ned to different levels on either side of the slab boundary); (c) De�ning shared iso-
vertices and iso-edges guarantees a connected surface mesh, but which may still exhibit ridge artifacts along slab boundaries; (d) Padding
the slab extents to include nearby points improves the consistency of the implicit functions, leading to a seamless reconstruction.

surfaces are computed independently within each client, large gaps
become evident (Figure 3a). We present a two-part approach that
guarantees a watertight connection.

(1) Consistent function valuesThe values of the two implicit
functions meeting at a slice must agree on the slice. Conveniently,
because isosurfacing samples functions discretely, it is unnecessary
for the 3D function to be continuous. Our strategy is to de�ne a sin-
gle 2D function over the slice and use it tooverridethe 3D implicit
function solely on the slice plane.

We achieve this by noting that the restriction of each client's
implicit function to the slice can be represented using bivariate B-
splines de�ned over a quadtree. Fusing the quadtrees de�ned by the
two clients (i.e. computing the coarsest quadtree containing the two
quadtrees as subtrees) and averaging the B-spline coef�cients, we
obtain a single 2D function de�ned on the shared slice that is close
to the restrictions of the two 3D implicit functions to that slice.
Figure 4 shows the fused quadtree and implicit function for points
non-uniformly sampled from a cylinder and Figure 3b shows the
resulting improvement.

(2) Consistent isocurvesThe shared quadtree and B-spline coef�-
cients ensure a common function on the slice, but we also need the
two clients to sample the function in the same way. If the clients
only restrict their octrees to the shared slice, they may obtain dif-
ferent quadtrees, which results in mesh cracks (Figure 3b).

We address this by performing level-set extraction over the 2D
slice (using the shared quadtree). InIso.2, for each octree face that
lies in the slice plane, we replace the iso-edges that would have
been computed from the octree cell by the iso-edges computed di-
rectly on the quadtree faces. As shown in Figure 3c, the recon-
structed surface parts are now guaranteed to be connected.

Figure 4: Non-uniform point sampling of a cylinder, with a two-
slab partition (top): The different sampling densities on either side
of the shared boundary slice results in the clients de�ning different
quadtrees and different functions on the slice (middle). Fusing de-
�nes a single, consistent quadtree and function (bottom).

4.3. Accurate implicit function

Even with guaranteed connectedness of the isosurfaces, the result-
ing surface often exhibits ridge artifacts along the slab boundaries,
which are especially evident with �at shading (Figure 3c). The
challenge is that the Poisson reconstruction is a global problem,
and attempting to solve it over distributed clients by disjointly par-

submitted to COMPUTER GRAPHICSForum(8/2023).


	Introduction
	Related work
	Review
	Screened Poisson surface reconstruction
	Unconstrained isosurface extraction

	Approach
	Slab-based partition
	Connected isosurface
	Accurate implicit function

	Implementation
	Preprocessing
	Reconstruction
	Postprocessing
	Relation to Bolitho2009
	Implications for serial reconstruction

	Evaluation
	Reconstruction quality
	Theoretical complexity analysis
	Empirical complexity results
	Benefits of load balancing

	Conclusion
	References
	Estimating redundancy

