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New Controls for Combining Images
in Correspondence

Jing Liao, Diego Nehab, Hugues Hoppe, and Pedro V. Sander

Abstract—When interpolating images, for instance in the context of morphing, there are myriad approaches for defining correspondence
maps that align structurally similar elements. However, the actual interpolation usually involves simple functions for both geometric paths
and color blending. In this paper we explore new types of controls for combining two images related by a correspondence map. Our
insight is to apply recent edge-aware decomposition techniques, not just to the image content but to the map itself. Our framework
establishes an intuitive low-dimensional parameter space for merging the shape and color from the two source images at both low and
high frequencies. A gallery-based user interface enables interactive traversal of this rich space, to either define a morph path or
synthesize new hybrid images. Extrapolation of the shape parameters achieves compelling effects. Finally we demonstrate an extension
of the framework to videos.

Index Terms—Image interpolation, morphing, edge-aware decomposition, design galleries
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1 INTRODUCTION

S INCE their debut several decades ago [1], seamless
animated transitions between images or videos, i.e.,

morphs, have continued to fascinate the public [2]. Such
animations are typically generated in a two-step process.
The first step identifies correspondences between source and
target images, usually with the assistance of some artistic and
semantic input. Given the correspondence map, the second
step creates an animation sequence that interpolates the two
images by transitioning both the position and color of every
point from source to destination.

In this paper, we explore new creative controls for
combining images related by a correspondence map. One
application is of course to create richer morph transitions (the
second step mentioned above). More broadly, these controls
define a low-dimensional space of synthesized images that
enables interactive melding of attributes from the source
images.

Our approach draws inspiration from techniques for
computing edge-aware decompositions of images e.g., [3],
[4], [5]. Our key insight is to apply such decomposition not
just on the color content of the two images, but also on the
geometric correspondence map.

Specifically, we use a rolling guidance filter [6] to con-
struct a two-scale representation (low- and high-frequency)
of the color content. We then identify the major edges in the
color images [7] to create a similar two-scale representation
of the correspondence map vectors. The weights associated
with these components effectively define a 4-dimensional
parameter space for merging two images, as illustrated in
Figures 1 and 12.

We develop an interface to quickly navigate this 4D space.
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Fig. 1. Extrema images at the 16 corners of our 4D interpolation space,
combining low- and high-frequency color and geometry from the two
input photographs highlighted in red (at top left and bottom right).

One application is to adjust morph transition paths. We also
demonstrate a generalization of the framework to video
morphing.

2 RELATED WORK

Morphing There is extensive research on creating image
morphs, including several surveys and books [8], [9], [10].
Early research focused on user interfaces for specifying
sparse correspondences (in the form of points, segments,
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or meshes) and on techniques for interpolating these corre-
spondences across the image domains. More recent work
focuses on increasing the level of automation [11], [12], [13]
and extending the problem to multiple images [14] or videos
[15], [16], [17].

There is relatively less research on controlling the morph
once correspondences are established. Most techniques de-
fine linear or quadratic paths on the sparse correspondences
and use regularization functionals to extend this to the
image domain. For instance, Nishita et al. [18] use linear
interpolation across Bézier patch networks and allow spa-
tially varying transition rates. [19] achieve spatially varying
transition control using multilevel B-spline interpolation.

Image decomposition A variety of methods are able to
separate image detail across scales, essentially by piecewise
smooth filtering. These include anisotropic diffusion [20],
bilateral filtering [3], weighted gradient-domain least squares
[4], local extrema envelopes [21], guided filters [5], L0 mini-
mization [22], and rolling guidance filters [6]. Our approach
applies this concept to obtain a multiscale decomposition of
a geometric map based on edge content in the two associated
color images. This also relates to joint-bilateral filtering [23],
[24], which uses discontinuities in one image to modulate the
smoothing filter over another image. Another noteworthy
work is hybrid images [25] which superimposes two images
at different scales such that the final interpretation varies
with viewing distance.

Image collection subspaces Principal components are
commonly used to interpolate among a collection of aligned
face images [26] or 3D face models [27]. In the latter case,
there is an explicit parametric description of a surface over a
spherical domain. Unlike such prior work which explicitly
models 2D shape, Nguyen et al. [28] apply principal com-
ponents on relative differences in shape encoded implicitly
by the maps between a co-aligned image collection. Our
work is closely related to this, but we further decompose the
subspace into different frequency bands.

Image deformation Many techniques allow controlled
deformations of image domains, such as moving least
squares [29] or finite element warping [30]. Our approach
differs in that it operates on two images in correspondence.

Image harmonization Existing approaches can incorpo-
rate regions from a source image onto a target image while
perserving key visual properties of the target image, such as
texture and noise [31], [32]. However, these methods do not
consider decoupling geometry frequencies, and thus cannot
reproduce many of the effects of our approach.

3 REVIEW OF BASIC MORPHING FRAMEWORK

Let I0 and I1 be two input images. A morph is a procedure
for generating intermediate images Iα for values α ∈ (0, 1).
In the process, points p0 in I0 are moved to their correspond-
ing positions p1 in I1. At the same time, their colors are
progressively changed from I0(p0) to I1(p1).

We build on the morphing framework of [13]. To create a
correspondence map, they define a halfway parameterization
using a vector field v on a domain Ω that is concep-
tually halfway between the input images. Each domain
point p ∈ Ω associates image points p0(p) = p− v(p) in I0

and p1(p) = p+ v(p) in I1. The vector field v is obtained
using an optimization that takes into account smoothness,
image structure, and user input. The construction is symmet-
ric in the sense that swapping the two images simply negates
the field v.

During the morph, each point p0(p) follows a trajec-
tory qα(p) toward p1(p) as α ranges from 0 to 1. The
trajectory is a quadratic Bézier curve that interpolates a third
point q1/2(p) = p+ w(p):

qα(p) = p+ (2α− 1) v(p) + 4α (1− α)w(p). (1)

The vector field w(p) is obtained by a second optimization
that minimizes geometric distortion at the halfway frame in
the animation. Note that the linear paths used in many other
morphing algorithms corresponds to setting all w(p) to the
zero vector.

Given the trajectories encoded by the vector fields v
and w, each output frame Iα is defined using linear color
interpolation as

Iα
(
qα(p)

)
= (1− α) I0

(
p0(p)

)
+ α I1

(
p1(p)

)
. (2)

These intermediate images are evaluated by a fast iterative
algorithm.

4 FREQUENCY-BASED DECOMPOSITION

We begin by generalizing the morphing framework to
decouple the interpolations of color and geometry, splitting
the transition parameter α into separate coefficients c and g,
respectively. The intermediate image Ic,g is thus defined as

Ic,g
(
qg(p)

)
= (1− c) I0

(
p0(p)

)
+ c I1

(
p1(p)

)
. (3)

Note that setting c = g = α reproduces the traditional
morph.

The next two sections describe our edge-aware multiscale
representations of both color and geometry, to enable further
splitting the interpolation coefficients into cL, cH , gL, gH

corresponding to the low- and high-frequency bands.

4.1 Color decomposition

The input images I0 and I1 are each decomposed into two
frequency bands as follows. We apply the rolling guidance
filter of Zhang et al. [6] to eliminate small details from I0,
resulting in a “low-frequency” image IL0 that preserves sharp
edges. We form the “high-frequency” image as IH0 = I0− IL0 .
Image I1 is similarly decomposed into IL1 and IH1 . Figure 2
shows two examples.

Given the decomposition, the parameters cL and cH can
be set independently such that the resulting intermediate
image is the sum of contributions from the two frequency
bands. Because the detail images IH0 and IH1 are both residual
images (with zero DC terms), it is sometimes useful to
allow non-affine combinations of this detail (as discussed in
Section 6). We therefore introduce separate coefficients cH0 , c

H
1

associated with the two images, to obtain:

IcL,cH0 ,cH1 ,g
(
qg(p)

)
= (1− cL) IL0

(
p0(p)

)
+ cL IL1

(
p1(p)

)
+ cH0 IH0

(
p0(p)

)
+ cH1 IH1

(
p1(p)

)
. (4)
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I1 IL1 |IH1 |

Fig. 2. Color decomposition of two input images into low- and high-
frequency components.
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Fig. 3. Images reconstructed using different combinations (cL, cH0 , c
H
1 ; g)

of the low- and high-frequency color components and overall geometry
from the two images in Figure 2. The first two results demonstrate transfer
of color detail from one image to the other, and the last two show blending
of low frequencies together with either zero detail or a superposition of
detail from both images.

By default, we set cH0 =(1−cH) and cH1 =cH . Figure 3 shows
various combinations of the color components from the lamp
images in Figure 2.

Contrast normalization The magnitudes in the high-
frequency image IH0 can differ significantly from those in
image IH1 , particularly when the contrast in one input image
is higher than that of the other. To produce meaningful
recombinations of frequency bands, (e.g., IL0 +IH1 or IL1 +IH0 ),
it is important to normalize this contrast. Otherwise, the
transferred high frequencies may be too subtle to notice
or may dominate the low frequencies. Figure 4 shows two
examples where this happens, as well as the results of the
contrast normalization procedure we describe below.

Fig. 4. In each image pair, the left image shows recombination of
frequency bands without contrast normalization, whereas the right image
shows the result of contrast normalization.

E0 E1 E′
0 E′

1

Fig. 5. Edge sets before and after Laplacian smoothing.

Let A0 and A1 be the RMS of IH0 and IH1 , respectively.
We modify (4) by maintaining the low-frequency part (i.e.,
the first row) unchanged, but replacing the high-frequency
part (i.e., the second row) with the new expression(
cH0

IH0
(
p0(p)

)
A0

+ cH1
IH1
(
p1(p)

)
A1

)(
(1− cL)A0 + cLA1

)
.

(5)

The first factor linearly combines the contrast-normalized
versions of the high-frequency images, and the second factor
computes the desired contrast as a linear combination of the
contrasts in the two high-frequency images. In other words,
when cL selects the low frequencies of IL0 we desire the
contrast to match that of IH0 , and conversely when cL selects
the low frequencies of IL1 we desire the contrast to match
that of IH1 .

4.2 Geometry decomposition
The more challenging step is to decompose the
correspondence map into low- and high-frequency compo-
nents. As with color, we desire independent decompositions
associated with I0 and I1. One initial thought was to simply
apply some some edge-preserving (e.g., bilateral) filter to the
vector field v. However, because the field v is symmetric,
we cannot determine whether high-frequency changes in v
are caused by details present in I0 or I1, or both. To make
this distinction, we must resort to the color content of these
images.

We first detect the major edges of IL0 and IL1 using the
method of Cheng et al. [7], obtaining two edge setsE0 andE1.
Each set is actually a network of parametric paths. We apply
Laplacian smoothing to these parametric paths to obtain
smooth edge sets E′

0 and E′
1 (Figure 5). These smoothed

version can be thought of as the low-frequency components
of E0 and E1.

We form the geometry decomposition associated with I0
as follows. For any pixel q0 on an edge of E0, we compute
two points: (1) the corresponding point p in the halfway
domain, i.e., satisfying q0 = p− v(p), and (2) the point q′0 in
the smoothed edge set E′

0 at the same parametric location
as q0 in E0. We define the low-frequency component of the
map as the vector from p to q′0. Thus,

vL0 (p) = p− q′0. (6)

We propagate these sparse edge-pixel correspondences to
the remainder of the image domain by solving a linear
system with soft thin-plate spline constraints. Finally, the
high-frequency component is the residual

vH0 (p) = v(p)− vL0 (p). (7)
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Fig. 6. Images reconstructed using various combinations (gL, gH0 , g
H
1 ; c)

of the low- and high-frequency geometric components from the two
images in Figure 2. The first two results demonstrate transfer of geometric
detail across images, and the last two show blending of low frequencies
together with either zero detail or a superposition of detail from both
images. (Note the silhouettes.)

The decomposition associated with I1 is computed anal-
ogously using the edges E1 and smoothed edges E′

1 as
vL1 (p) = q′1 − p and vH1 (p) = v(p)− vL1 (p).

Because the quadratic trajectory component w(p) is
generally small and not associated with edges in either I0
nor I1, we do not decompose it and instead modulate its
contribution according to the low-frequency coefficient gL.

Given the geometry decomposition, the parameters gL,
gH0 , and gH1 can be set independently to define the final
trajectory path as a sum of contributions from the two
frequency bands:

qgL,gH0 ,gH1 (p) = p− (1− gL) vL0 (p) + gL vL1 (p)

− gH0 vH0 (p) + gH1 vH1 (p) + 4gL(1− gL)w(p). (8)

Figure 6 shows some examples using the same pair of lamp
images.

4.3 Multiscale image combination space
Combining the color and geometry decompositions, we
arrive at a 4D space parameterized by coordinates
(cL, cH , gL, gH), which represent the low- and high-
frequency geometric and color components. Figures 12
and 13 illustrate the extrema images of this 4D space for
a few examples.

The more general version, which allows non-affine combi-
nations of color and geometry detail from the two images, is
the 6D space with coordinates (cL, cH0 , c

H
1 , g

L, gH0 , g
H
1 ). We

discuss our preferred way to explore this higher-dimensional
space in Section 6.

5 CONTROLLING MORPH TRANSITION RATES

Parametric cubic splines To define a morph using our
geometry and color decompositions, we express the parame-
ters cL, cH , gL, gH as cubic spline functions of the transition
parameter α. The user can control the rate, or speed, of the
morph transition by adjusting a small number of spline
control points, which are then smoothly interpolated as
shown in Figure 7. If c(α) = g(α) = α, then both color
and geometry are morphed at a constant speed throughout
the transition interval. Providing the freedom to manipulate
these transition rate functions lets the user create more
interesting effects.

Fig. 7. A morph between two lamps (input images highlighted in red).
The lamp base uses the transition functions above, while the lamp shade
uses linear interpolation.

Spatial adaptivity For some image morphs, it is useful
to apply different transition functions (including different
endpoints) over particular spatial regions of the halfway
domain. We let the user delineate these regions using
either intelligent scissor [33] or polygon scissor tools. The
parameters become transition rate functions of both α and
position p:

cL(α, p), cH(α, p), gL(α, p), gH(α, p). (9)

In the example of Figure 7, the base of the lamp has different
rate functions, plotted at the top of the figure, whereas
the remainder of the image (lamp shade and background)
have no specified control points and thus uses default linear
interpolation.

If multiple (potentially overlapping) regions are speci-
fied, they are assembled in the halfway domain in a user-
configurable order. To generate each intermediate image Iα
of the morph, we rasterize the 6D parameters associated with
the regions into the halfway domain, then apply Gaussian
filtering to obtain a smooth transition (approximately 20
pixels wide) across the region boundaries. This smoothed
parameter field is then used to evaluate the intermediate
image.

6 NON-AFFINE COMBINATIONS

The 6D combination space (cL, cH0 , c
H
1 , g

L, gH0 , g
H
1 ) is useful

for scenarios where the user wants to include details from
both images, such as the rightmost results in Figures 3 and 6
(for color and geometry, respectively). Alternatively, the user
may want to completely omit high frequencies, as shown
in the third results of Figures 3 and 6. Thus, it is useful to
relax the constraint that the pairwise coefficient combinations
must form a partition of unity.

However, manipulating two additional spline functions
is cumbersome. Fortunately, for the application of morphing
we have found an intuitive mode of operation that achieves
many of the interesting symmetric combinations without
requiring the specification of additional splines.

The idea is to define the additional functions by reflecting
the existing ones about the halfway point α = 1

2 of the
morph interval. As before, we have

cH1 (α, p) = cH(α, p), gH1 (α, p) = gH(α, p), (10)
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Fig. 8. Given the specified function cH , we set cH1 (α) = cH(α) as before,
but generate the (dotted) function cH0 (α) = cH(1− α) by reflecting about
the midway point α = 1

2
. In these three examples, color detail from both

images is reduced (left), combined (center), or increased (right) in the
middle of the morph.

but now we assign

cH0 (α, p) = cH(1− α, p), gH0 (α, p) = gH(1− α, p). (11)

Refer to Figure 8 for three useful settings for this reflection
mode.

7 USER INTERFACE

Our user interface allows manipulation of the four splines
cL(α), cH(α), gL(α), gH(α) associated with an image morph
by directly specifying control points at any transition values
α, as shown on the left side of Figure 9. The user can toggle
the reflection mode described in Section 6 for color and/or
geometry.

Each control point corresponds to a vector in the 4D
combination space described in Section 4.3. Navigating this
4D space by adjusting coefficients using traditional slider
controls can be unintuitive. Instead, when a control point is
selected, we present a gallery-based interface inspired from
design galleries [34] to enable visual navigation within the
4D space, as shown on the right side of Figure 9. The image
that represents the currently selected 4D point is shown in
the center of the gallery. The eight images in the periphery
each show the potential result of advancing a fixed step in
one of the eight axis directions (increasing or decreasing the
value in each of the four dimensions). The user modifies the
central image by holding down the mouse button towards
any of these directions. The distance from the mouse cursor
to the center of the gallery determines the rate of change.
All 9 images update in real-time, so the user can efficiently
navigate through the 4D space.

Please refer to the accompanying video for a complete
demonstration of the user interface.

8 EXTENSION TO VIDEOS

Our approach extends to video morphing. Given a
correspondence between two temporally synchronized
videos e.g., [17], we apply our technique to each frame. The
main difficulty is to track any user-delineated regions. We

Fig. 9. The user interface in gallery mode.

achieve this by following the same approach used to track
control points in [17]. Essentially, we treat the user-specified
polygon scissor points just like morphing control points,
tracking them using optical flow and letting the user adjust
their positions in different frames when necessary.

Figure 16 shows frames from two examples results. The
first is that of a woman talking, in which her face’s color and
geometry details are replaced by those of a man. Note that
the face region, which was delineated for this transition, is
accurately tracked through optical flow. The second example
transfers the color and high frequency geometry from a
purple flower image to a video of a red flower blowing in the
wind.

9 RESULTS

Figures 1, 12 and 13 show the sixteen extreme affine
combinations of low and high-frequency color and geometry
from several pairs of input photographs. For each pair set,
the top row uses low- and high-frequency colors from I0,
whereas the bottom row uses low- and high-frequency colors
from I1. The two intermediate rows use low-frequencies
from one of the images and high-frequencies from the other.
Conversely, each column uses different combinations of low-
and high-frequency geometry from each input image. Note
how the parameters span a large rich space of distinctive
images, many of which are interesting and plausible.

Figure 14 shows examples of non-affine combinations.
Since the weights do not form a partition of unity, an
additional two high-frequency coordinates must be specified.

Figure 15 shows a selection of frames in novel morphing
sequences enabled by our technique. The first two images
in each set show the input. The first row shows a morph in
which the transition starts earlier on the right than on the left,
recreating an effect reminiscent of the seminal Exxon tiger
animation [37]. In the morph between a raw steak and an
apple, the steak is first warped to have the shape of the apple,
then the stem and leaf appear quickly, and finally the color is
transitioned to that of the apple. Finally, the bunny-origami
sequence uses similar settings, but restricted to the region
covered by the bunny.



6

I0 I1 Poisson blending [35] Harmonization [31]

Image melding [32] (a) (0,0.7,0.7; 1,0,1) (b) (0,1,0; 0,1,0) (c) (0.5,1,0.5; 0.5,0.5,0.5)

Fig. 10. Comparison between previous works and our results (a-c) using different combination weights (cL, cH0 , c
H
1 ; gL, gH0 , g

H
1 ). Result (a) resembles

the earlier work which transfers the face from I1 while retaining the appearance from I0; (b) preserves the facial detail of I0 but warps its structure
(e.g., smile) from I1; result (c) shows the additional interpolation of color and geometry.

Existing 2D warping/morphing approaches do not de-
couple and recompose different geometry frequencies. So the
effects achieved by our work are of a different nature than
those of earlier techniques. Please refer to the accompanying
video for a demonstration of all of the examples in the paper
and the comparisons to existing morphing techniques.

In Figure 10, we compare our results with earlier ap-
proaches that also attempt to seamlessly combine different
images. The Poisson-blended result [35] does not preserve
the texture details of the painting. The Harmonization [31],
Image melding [32], and our results (a) & (b) are able to
preserve these texturing details. We achieve this by using the
geometry from the source image and different combinations
of colors for these two results. Furthermore, by manipulating
the geometry transition functions, we can achieve a wide
range of different output styles, such as the one shown in
(c), where we combine both geometry and color information
from the input images.

The comparisons of Figure 11 show that regenerative
morphing [36] allows artistic transitions between arbitrary
scenes. However, if there is a more direct correspondence
between the scenes, our method can use this correspondence
to obtain better results.

Limitations We have identified a range of problems that
our method cannot solve, and that we believe could be
ameliorated in future work. The first problem is visible
in the body-builder example of Figure 12. Here, large
lighting differences in the input images causes the color
decompositions to be irreconcilable. As a consequence, the
middle rows, which combine color frequency bands from
both inputs, look unrealistic.

Another problem can be seen in the cat-lion example
of Figure 12. Here, in the geometry decomposition step,

the major edge sets detected on two input images are
asymmetric. This causes the two central columns, which
combine geometry frequency bands from both inputs, to
include asymmetric results even though no such asymmetries
are visible in the input images. This could potentially be
addressed by manual selection of the major edge sets, or
in future work using some optimized joint selection that
considers both images simultaneously.

Moreover, when sharp edges in the input images are not
precisely matched by the correspondence map, choices that
combine color frequency bands from both inputs will include
two sets of misaligned edges. This creates the ghosting
artifacts visible in some of our examples, such as the hairline
in human face example of Figure 13.

Finally, although the original correspondence map is
guaranteed by construction to be a bijection, we cannot
guarantee that the combination of low and high frequency
components from different images and extrapolation of the
high frequencies will still result in a bijection. The user can
preview the results from the gallery-based interface and stop
advancing in a direction that would cause foldovers.

10 CONCLUSION

We have introduced a framework for multiscale combination
of shape and color attributes from a pair of images related
by a correspondence map. We have shown that this space of
combinations spans a rich variety of hybrid images.

An exciting area for future work is to extend this
framework to multiple images, particularly for collections
of images of a particular object class (e.g., faces). It may
be feasible to jointly analyze a set of correspondence maps,
either with respect to a single reference image or within
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I0 I1 Regenerative morphing [36] Our result

Fig. 11. Comparison between regenerative morphing [36] and our results. In the upper example we use combination weights (0.5,0.5,0.5; 0.5,0.5,0.5)
to generate the halfway transition image between I0 and I1; in the lower example we use combination weights (0,0,1; 0,0,1) to combine low
frequencies of I0 and high frequencies of I1. The scenes in the top row have a more direct correspondence between objects, thus allowing our
method to provide a better transition. On the other hand, the scenes on the bottom row are unrelated and therefore regenerative morphing can
produce a better transition.

some hierarchical clustering, to extract useful multiscale prin-
cipal components. One can also envision defining semantic
paintbrushes to transform the image towards or away from
particular reference points, e.g., “make this face look more
like Brad Pitt”.
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Fig. 12. Different combinations of low- and high-frequency color and geometry from the pairs of input photographs highlighted in red.
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Fig. 13. Different combinations of low- and high-frequency color and geometry from the pairs of input photographs highlighted in red.
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Fig. 14. Example results using various combination weights (cL, cH0 , c
H
1 ; gL, gH0 , g

H
1 ), demonstrating shape extrapolation (gL 6∈ [0, 1]) and non-affine

combinations (cH0 + cH1 6= 1 or gH0 + gH1 6= 1) of color or geometry detail.

Fig. 15. Selected frames in novel morphing sequences enabled by our technique. The two leftmost images are the input pair. Examples show a range
of creative effects, such as spatially varying transition rates, decoupled geometry and color transitions, and decoupled low- and high-frequency
transitions.

Fig. 16. Two results of our video extension. The two leftmost frames are taken from the original videos, and the remaining frames are from our
combined result. For the bottom-row example, the input purple flower is a static (single-image) video.


