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Abstract

Discretization and reconstruction are fundamental operations in computer
graphics, enabling the conversion between sampled and continuous repre-
sentations. Major advances in signal-processing research have shown that
these operations can often be performed more efficiently by decomposing
a filter into two parts: a compactly supported continuous-domain function
and a digital filter. This strategy of “generalized sampling” has appeared in a
few graphics papers, but is largely unexplored in our community. This survey
broadly summarizes the key aspects of the framework, and delves into specific
applications in graphics. Using new notation, we concisely present and extend
several key techniques. In addition, we demonstrate benefits for prefiltering in
image downscaling and supersample-based rendering, and analyze the effect
that generalized sampling has on the noise due to Monte Carlo estimation.
We conclude with a qualitative and quantitative comparison of traditional and
generalized filters.
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1
Introduction

Many topics in computer graphics involve digital processing of continuous-
domain data, so it is unsurprising that discretization and reconstruction are
essential operations. Figure 1.1 shows the traditional sampling and reconstruc-
tion pipeline. During discretization (e.g., rasterization of a scene, or capture
of a digital photograph), a continuous input signal f is passed through an

mixed
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continuous
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input output

discretization reconstruction

Figure 1.1: The traditional signal-processing pipeline is divided into two major stages: dis-
cretization and reconstruction. During discretization, a continuous input signal f is convolved
with the reflection ψ∨ of a given analysis filter ψ. The resulting prefiltered signal fψ = f ∗ ψ∨

is then uniformly sampled into a discrete sequence JfψK. To obtain the output approximation f̃ ,
the reconstruction stage computes the mixed convolution between JfψK and a given recon-
struction kernel ϕ, i.e., a sum of shifted copies of ϕ, where each shifted copy scaled by the
corresponding entry in JfψK. (Our notation is explained in greater depth in section 3.)
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Figure 1.2: A continuous function f is prefiltered with analysis kernel ψ (here the box func-
tion β0, not to scale). The resulting signal fψ is sampled into a discrete sequence JfψK. The
final output f̃ is obtained by mixed convolution between the discrete sequence JfψK and the
reconstruction kernel ϕ (here the hat function β1, not to scale).

analysis filter ψ (a.k.a. sampling kernel, prefilter, or antialiasing filter) before
being sampled. The result is a discrete sequence JfψK (e.g., an image). During
reconstruction (e.g., interpolation of a texture, or display of an image on a
screen), the continuous approximation f̃ of the original signal is obtained by
mixed convolution with a reconstruction kernel ϕ (a.k.a. generating function,
basis function, or postfilter). Figure 1.2 illustrates each step of the process
with a concrete example in 1D.

The roles of the analysis filter ψ and reconstruction kernel ϕ are tradi-
tionally guided by the sampling theorem [Shannon, 1949]. Given a sampling
rate 1/T , the analysis filter ψ = sinc(·/T) eliminates from the input signal f
those frequencies higher than or equal to 1/2T so that the bandlimited fψ
can be sampled without aliasing. And in that case, the reconstruction ker-
nel ϕ = sinc(·/T) recreates f̃ = fψ exactly from the samples.

Sampling may also be interpreted as the problem of finding the function f̃
that minimizes the norm of the residual ‖f − f̃‖L2 . If we restrict our attention
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Figure 1.3: The main idea in generalized sampling is to broaden the analysis and reconstruction
kernels by expressing these as mixed convolutions (p ∗ψ and r ∗ϕ) with a pair of digital filters
(p and r) while retaining compact support for the functions ψ and ϕ.

K |K̂| β3 |β̂3|

β3
int

= β3 ∗ 1
6Jβ3K-1

|β̂3
int|

Figure 1.4: The traditional Keys cubic (Catmull-Rom spline)K has support 4 and a reasonably
sharp frequency response |K̂|. The cardinal cubic B-Spline β3

int is a generalized kernel formed
from the basic cubic B-spline β3 and a digital filter. The digital filter acts to widen support to
infinity (though with exponential decay) and to significantly sharpen the frequency response.

to the space of bandlimited functions, the ideal prefilter is still ψ = sinc(·/T).
However, functions are often not bandlimited in practice (e.g., due to object
silhouettes, shadow boundaries, vector outlines, detailed textures), and for
efficiency we desire ψ and ϕ to be compactly supported.

In addressing these concerns, the signal-processing community has
adopted a generalization of the sampling and reconstruction pipeline [Unser,
2000]. The idea is to represent the prefilter and reconstruction kernels as mixed
convolutions of compactly supported kernels and digital filters. As shown in
figure 1.3, digital filters p and r respectively modify the prefilter ψ and the
reconstruction kernel ϕ. The additional degrees of freedom and effectively
larger filter support enabled by p and r allow the design of generalized kernels
with better approximation properties or sharper frequency response. Figure 1.4
compares a traditional piecewise cubic kernel (the Catmull-Rom spline, or
Keys cubic) with a generalized cubic kernel (the cardinal cubic B-spline).
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Figure 1.5: Generalized sampling adds a digital filtering stage to the pipeline. The output JfψK
of the sampling stage is convolved with a digital transformation filter q = p∨ ∗ r. It is the
result c of this stage (and not JfψK) that is convolved with the reconstruction kernel ϕ to
produce the output signal.

Equivalently, the digital filters p and r can be combined as q = p∨ ∗r into
a separate filter stage as shown in figure 1.5. The result JfψK of the sampling
stage is transformed by the digital filter q (a.k.a. correction or basis change)
to form a new discrete sequence c, which is then convolved with ϕ as usual to
reconstruct f̃ . The key to the efficiency of this generalized sampling framework
is that the digital filters p and r that arise in practice are typically compact
filters or their inverses [Unser et al., 1991], both of which are parallelizable
on multicore CPU and GPU architectures [Ruijters et al., 2008, Nehab et al.,
2011]. Thus, the correction stage adds negligible cost.

An important motivation for generalized sampling is improved interpo-
lation [Blu et al., 1999]. As demonstrated in figure 1.6, an image JfψK is
processed by a digital filter q resulting in a coefficient array c which can then
be efficiently reconstructed with a simple cubic B-spline filter β3. The result-
ing interpolation is sharper and more isotropic (i.e., has higher quality) than
that produced by the popular Mitchell-Netravali filter [1988], even though
both filters have the same degree and support. The implementation of the
digital filtering stage is described in detail in section 4.2. The theory of image
upscaling is described in section 5.2, with implementation notes in section 8.2.
Source-code in provided in appendix A.

In graphics, careful prefiltering is often necessary to prevent aliasing.
McCool [1995] describes an early application of generalized sampling, in
which rendered triangles are antialiased analytically by evaluating a prism
spline prefilter. The resulting image is then convolved with a digital filter. In
this work, we apply generalized sampling to image downscaling and in general
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Input f Reconstructed f ∗M

→
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Figure 1.6: Reconstruction example. The top row shows the result of the traditional cubic
Mitchell-Netravali filter M . The bottom row uses the generalized sampling approach, first
applying a digital filter r =

q 1
6 ,

4
6. ,

1
6
y-1 as a preprocess, and then reconstructing with the cubic

B-spline β3 — which is less expensive to evaluate on a GPU than filter M .

to rendering with supersampling. Figure 1.7 shows an example. The input f is
prefiltered using the cubic B-spline basis β3. The resulting over-blurred image
is then transformed with a digital filter p∨ that reshapes the antialiasing kernel
a posteriori. The final low-resolution image is sharper and exhibits less aliasing
than with a Catmull-Rom filter, for a similar computational cost. The theory
of image downscaling is described in section 5.2, with implementation notes
in section 8.2 and source-code in appendix A. Generalized supersampling is
described in section 7.

Our aim is to present a concise overview of the major developments in
generalized sampling and to extend these techniques to prefiltering in graphics.
To facilitate exposition and exploration, we develop a new concise notation
for sampling. With this parameter-free notation, key techniques are derived
using simple algebraic manipulation. We conclude by comparing a variety of
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Input f Prefiltered, sampled Jf ∗K∨K
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Figure 1.7: Prefiltering example. The top row shows the result of rendering with the Keys
(Catmull-Rom) prefilter K. The bottom row shows rendering using a B-spline β3, followed
by convolution with a digital filter p∨ =

q 1
6 ,

4
6. ,

1
6
y-1. The generalized prefilter p ∗ β3 equals

the cubic cardinal B-spline β3
int. Kernels K and β3 have the same support, but the improved

frequency response of β3
int reduces aliasing while maintaining sharpness. (Our notation is

explained in section 3.)

traditional and generalized filters, using frequency-domain visualizations and
empirical experiments using both L2 and SSIM metrics, to identify the best
strategies available.
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Background

2.1 Reconstruction kernels

The search for finite-support alternatives to the ideal reconstruction filter has
led to many non-polynomial windowed-sinc variants [Meijering et al., 1999a].
The most popular in graphics is the Lanczos window [Duchon, 1979]. (Accord-
ing to our experiments in section 10, the Hamming window [Hamming, 1977]
performs better.)

Polynomial functions have been shown to have an efficiency advantage,
and to match (and surpass) windowed-sinc approximations in quality [Mei-
jering et al., 2001]. We therefore focus on piecewise polynomial kernels.
Like Thévenaz et al. [2000], we use a set of properties that characterize re-
construction kernels to guide us through the bibliography. For an alternative,
chronological survey, please refer to Meijering [2002].

The degree N of a kernel ϕ is the maximum degree of its polynomial
pieces. The support W of ϕ is the width of the smallest interval outside of
which ϕ vanishes (assuming a sample spacing of one). Increasing either the
degree or support of a kernel ϕ introduces additional degrees of freedom
for the design of good kernels, but unfortunately also adds to the runtime
computational cost.

8



2.1. Reconstruction kernels 9

Most kernels are symmetric about the origin. The regularityRmeasures the
smoothness of ϕ. That is, a kernel ϕ is said to be in CR if it is differentiable R
times. The space of functions spanned by a generator ϕ is denoted by Vϕ.
The order of approximation L of Vϕ measures the rate at which the residual
between f and its optimal approximation f̃T ∈ Vϕ vanishes as the sample
spacing T is reduced:

‖f − f̃T ‖L2 = Cf T
L as T → 0.

Equivalently, a space with approximation order L can reproduce polynomial
signals of up to degree L−1 [Strang and Fix, 1973]. Enforcement of regu-
larity, symmetry, and approximation order in ϕ consume degrees of freedom
from the design process. In fact, the best approximation order a kernel of
degree N can attain is L=N+1. This optimal order is achievable even with a
compact support W =N+1 [Blu et al., 2001]. Various strategies for setting
the remaining degrees of freedom have led to the development of a multitude
of reconstruction kernels.

Mitchell and Netravali [1988] design a family of cubic kernels by starting
with W = 4, R = 1, and L = 1. They set the two remaining degrees of
freedom by subjectively evaluating the amount of ringing, blur, and anisotropy
in upsampled images. Alternatively, setting L = 2 leaves only one degree of
freedom, and they similarly set its value based on subjective quality.

Interpolating kernels A reconstruction kernel ϕ is interpolating if it sat-
isfies ϕ(0) = 1 and ϕ(k) = 0, k ∈ Z \ {0}. Naturally, enforcing this property
further eliminates degrees of freedom. Popular interpolating kernels include
the ubiquitous nearest-neighbor (or box, L = 1,W = 1) and linear (or hat,
L = 2,W = 2) interpolation kernels. These are members of the family of
local Lagrangian interpolators, which have optimal order and minimum sup-
port L = W = N + 1 [Schafer and Rabiner, 1973, Schaum, 1993, Blu et al.,
2001] but offer no regularity. Several authors have reached the Catmull-Rom
cubic spline [Catmull and Rom, 1974] by different means [Keys, 1981, Park
and Schowengerdt, 1983, Meijering et al., 1999b, Blu et al., 2001]. It is the only
C1-continuous cubic interpolating kernel with optimal order and minimum
support.

Other noteworthy kernels include an additional cubic (W = 6, L = 4)
by Keys [1981], the C0-continuous (interpolating) and the C1-continuous
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(not interpolating) quadratics (N = 2,W = 3, L = 2) of Dodgson [1997],
a quartic (L = 5,W = 7, R = 1) by German [1997], and the quintic and
septic kernels (W = 6 and 8, but L = 3) by Meijering et al. [1999b]. The
support of these kernels is larger than necessary for their approximation order.

Generalized kernels A breakthrough came from the idea that the respon-
sibility for interpolating the original samples need not be imposed on the
continuous kernel ϕ itself, but can instead be achieved by using a digital
correction filter q. This was first demonstrated in the context of B-spline
interpolation [Hou and Andrews, 1978, Unser et al., 1991].

B-splines are the most regular members of a class of functions called
MOMS (for Maximal Order, Minimum Support) [Blu et al., 2001]. The best
performing kernels, the O-MOMS (Optimal MOMS), trade off regularity to
minimize the leading coefficient CL in the optimal mean approximation error

‖f − f̃T ‖L2 = CL T
L ‖f (L)‖L2 as T → 0.

If continuous derivatives are desired, the SO-MOMS (Sub-Optimal MOMS)
minimize coefficient CL subject to C1-continuity.

It is possible to further reduce reconstruction error by mimicking the low-
frequency behavior of orthogonal projection (see below). The shifted linear
interpolation scheme of Blu et al. [2004] gives up on symmetry and uses the
additional freedom to minimize the approximation error. Quasi-interpolation
schemes give up on interpolation of JfψK, so that q is freed of this restriction.
In that case, the interpolation property holds only when f is a polynomial
of degree less than L (the quasi-interpolation order). Blu and Unser [1999a]
describe an IIR design for q, Condat et al. [2005] an all-pole design, and Dalai
et al. [2006] a FIR design. The improvements due to this relaxation are often
substantial, particularly for low-degree schemes (N ≤ 3).

2.2 Analysis filters

As explained earlier, an important goal is orthogonal projection: minimizing
the residual ‖f − f̃‖L2 between the reconstruction f̃ and the input signal f .
Given a reconstruction kernel ϕ, orthogonal projection is achieved using a
prefilter known as the dual of ϕ and denoted by the symbol ϕ̊. This prefilter
may be written in the form p ∗ ϕ (see section 4.3). Exploiting the fact that in
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computer graphics we often have access to the input signal prior to sampling,
Kajiya and Ullner [1981] use this orthogonal projection for antialiased text
rasterization. In their work, ϕ is a Gaussian that models the CRT electron
beam, and f corresponds to the text being rendered. They further restrict the
optimization to non-negative coefficients c and explore a perceptual alternative
to the L2 norm.

This idea was extended by McCool [1995] to include other prefilters of
the form p ∗ ψ, where ψ is a compactly supported B-spline basis function.
A similar factorization is used: first the input is prefiltered with ψ, then the
result is transformed to what would be obtained if directly prefiltering with
the cardinal spline.

Orthogonal projection is commonly used in processing of previously
discretized input signals. Most image processing operations result in signals
outside of the approximation space. These can then be projected back. In
the case of scaling and translation, there are efficient algorithms to achieve
this [Unser et al., 1995a,b, Muñoz et al., 2001].

The approach of orthogonal projection has not been widely adopted in
computer graphics. In part, there is a lack of familiarity with the framework.
But also, there is the issue that the perceptual quality of an approximation
involves a subjective balance between aliasing, blurring, ringing, and positivity,
to which the L2 norm is oblivious (as noted by Kajiya and Ullner [1981]).
Some favor the sharpness offered by filters with negative lobes (the “negative
lobists” [Blinn, 1989]), while others fear the accompanying ringing in dark
regions (a problem accentuated by gamma correction). Rendering systems
therefore offer several alternatives, including box, hat, Mitchell-Netravali,
Catmull-Rom (Keys), Gaussian, and windowed-sinc filters [Pixar, 2005], but
rarely (if ever) offer orthogonal or oblique projections.



3
Basic notation, definitions, and properties

Many of the derivations in generalized sampling involve tedious manipulations
of integrals and summations, including changes of index variables. In this
section, we introduce a new index-free notation to help eliminate this problem.
Using this notation and a small set of properties, we are able to simplify the
derivations of many algorithms and concepts to trivial algebraic manipulations.

For simplicity, we formulate the mathematics in one dimension. However,
all results are easily extended to 2D images and 3D volumes in a separable way
by making use of tensor-product basis functions. Furthermore, we assume all
signals are real even though results are easily generalized to complex signals.

We denote the implicit argument to a univariate function with a dot “·”:

f(·+ k) def= x 7→ f(x+ k). (3.1)

The prefiltering stage in figures 1.1 and 1.5 simply perform a continuous
convolution between the signal f and the prefilter kernel ψ:

f ∗ ψ∨ def=
∫ ∞

-∞
f(t) ψ∨(·− t) dt. (3.2)

We denote discrete sequences by bold letters, or write the values explicitly,
enclosed in bold square-brackets J K:

c
def= J. . . , c-2, c-1, c0, c1, c2, . . .K, ck ∈ R, k ∈ Z. (3.3)

12
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An element of a sequence can be selected by a subscript so that ck
def= ck above.

A key part of our new notation is the use of bold square-brackets, when
enclosing an expression with a single free variable, to denote the discrete
sequence that results from uniformly sampling the expression at all multiples
of a sampling spacing T :

JfKT def=
q
. . . , f(−2T ), f(−T ), f(0), f(T ), f(2T ), . . .

y
(3.4)

def= JfK, in short when T = 1. (3.5)

This is the operation performed by the sampling stage of figures 1.1–1.5.
The digital filtering introduced by the generalized sampling pipeline in

figure 1.5 corresponds to discrete convolution with the discrete sequence q:

c = b ∗ q, where ck =
∑
i∈Z

bi qk−i, k ∈ Z. (3.6)

The reconstruction stage in figures 1.1–1.5 shares many properties with
convolutions. We therefore introduce notation for a mixed convolution with
spacing T between a discrete sequence c and a reconstruction kernel ϕ:

c ∗T ϕ
def=
∑
k∈Z

ckϕ(·− kT ) and in particular c ∗ ϕ def= c ∗1 ϕ. (3.7)

In most cases, commutativity and associativity apply to all combinations of
convolutions. Parentheses are unnecessary as there is no danger of ambiguity.
We can manipulate convolutions like products:

(b ∗ c) ∗ f = b ∗ (c ∗ f) and (f ∗ g) ∗ b = f ∗ (g ∗ b). (3.8)

The only exception is in expressions involving multiple mixed convolu-
tions with different spacings. Even then, it is still true that

b ∗T (c ∗S f) = c ∗S (b ∗T f), (3.9)

but the spacings must be the same for us to factor out the discrete convolution:

b ∗T (c ∗T f) = c ∗T (b ∗T f) = (b ∗ c) ∗T f. (3.10)

For repeated convolution, we use a notation reminiscent of exponentiation:

f∗n = f ∗ · · · ∗ f︸ ︷︷ ︸
n

and b∗n = b ∗ · · · ∗ b︸ ︷︷ ︸
n

(3.11)
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The reflection of sequences and functions is denoted by

(c∨)k
def= c−k, k ∈ Z and f ∨(x) def= f(−x), x ∈ R (3.12)

and distributes over all flavors of convolution:

(b ∗ c)∨= b∨∗ c∨, (f ∗ g)∨ = f ∨∗ g∨, and (b ∗ ϕ)∨= b∨∗ ϕ∨. (3.13)

The simple connection between inner-products and convolutions,

〈f, ψ〉 def=
∫ ∞

-∞
f(t)ψ(t) dt = (f ∗ ψ∨)(0), (3.14)

is the source for the pervasive reflection operation. Its generalization〈
f, ψ(·− k)

〉 def=
∫ ∞

-∞
f(t)ψ(t− k) dt = (f ∗ ψ∨)(k) (3.15)

lets us express in compact form the fundamental operation of sampling a
function f with an analysis filter ψ:q

. . . ,
〈
f, ψ(·− 1)

〉
, 〈f, ψ〉,

〈
f, ψ(·+ 1)

〉
, . . .

y
= Jf ∗ ψ∨K. (3.16)

Using our notation, we can succinctly express the key property that sam-
pling a mixed convolution with matching spacing T is equivalent to performing
a discrete convolution between the sequence and the sampled function:

Jb ∗T fKT = b ∗ JfKT . (3.17)

In other words, these operations commute.
The continuous unit impulse δ (the Dirac delta) and the discrete unit

impulse δ (the Kronecker delta) are the identity elements for the convolution
operations:

δ ∗ f def= f, ∀f and δ ∗ c def= c, ∀c. (3.18)

The discrete impulse can also be defined simply as

δ = J. . . , 0, 0, 1. , 0, 0, . . .K where δ0 = 1. (3.19)

The discrete convolution operation c = b ∗ q can often be efficiently
inverted (see section 4.2). The inverse operation is again a discrete convolution:

b = c ∗ q-1 with q ∗ q-1 = δ. (3.20)
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Reflection and convolution-inverse commute, so we can define:

b-∨ def= (b-1)∨ = (b∨)-1. (3.21)

Interestingly, the derivative operation does not distribute over convolution:

(f ∗ g)′ = f ′ ∗ g = f ∗ g′. (3.22)

This rule lets us express the derivative operation as a convolution, since

f = f ∗ δ ⇒ f ′ = (f ∗ δ)′ = f ∗ δ′. (3.23)

For higher-order derivatives, we use the short notation

f (n) = f ∗ (δ′)∗n. (3.24)

The discrete analog of the derivative is the finite difference. We can express
the (backward) differencing operation as convolution with the sequence

∆ = J. . . , 0, 0, 1. ,−1, 0, . . .K where ∆0 = 1. (3.25)

Just as with the derivative operation,

∆ ∗ (b ∗ c) = (∆ ∗ b) ∗ c = b ∗ (∆ ∗ c). (3.26)

The continuous unit (or Heaviside) step function u is the integral of the
unit impulse. Accordingly, the discrete unit step function u is the summation
of the discrete unit impulse:

u(x) =
∫ x

−∞
δ(t) dt and ui =

i∑
k=−∞

δk. (3.27)

From these definitions, it is clear that

(f ∗ u)(x) =
∫ x

−∞
f(t) dt and (c ∗ u)i =

i∑
k=−∞

ck. (3.28)

Furthermore,

u ∗ δ′ = δ and u ∗∆ = δ, (3.29)

so that the pairs u, δ′ and u,∆ are convolution inverses.
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We use τh to denote the translation of the impulse δ by an offset h:

τh = δ(·− h). (3.30)

This lets us express the translation of a function f as a convolution:

f(·− h) = τh∗ f. (3.31)

The centered B-spline basis functions βn are an important family of
generating functions. The box filter β0 can be defined as:

β0 = ∆ ∗ u ∗ τ-1/2. (3.32)

The hat filter β1 and the remaining B-splines are recursively defined as:

βn = βn-1∗ β0, (3.33)

or equivalently using the notation for repeated convolution:

βn = (β0)∗(n+1) = ∆∗(n+1) ∗ u∗(n+1) ∗ τ-(n+1)/2. (3.34)

Note that the one-sided power function can be written equivalently as

u∗(n+1)(x) = xn

n! u(x). (3.35)

A useful shorthand for the cross-correlation between two functions is:

aϕ,ψ
def=
∫ ∞

-∞
ϕ(t)ψ(t− ·) dt = ϕ ∗ ψ∨. (3.36)

In particular, we denote the auto-correlation as aϕ
def= aϕ,ϕ.

Two functions ϕ and ψ are biorthogonal if they satisfy

〈
ϕ(·− i), ψ(·− j)〉 =

1 if i = j,

0 otherwise,
(3.37)

where i, j ∈ Z, or equivalently in our notation,

Jaf,gK = δ. (3.38)

The Discrete Time Fourier Transform (DTFT) of a sequence and the Fourier
Transform of a function are defined respectively by

ĉ(ξ) def=
∑
k∈Z

cke
−2πiξk and f̂(ξ) def=

∫ ∞
-∞
f(x)e−2πiξx dx. (3.39)
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Convolution in the time domain becomes a product in the frequency domain.
This is also true of mixed convolutions:

(̂b ∗ c) = ĉ b̂, (̂f ∗ g) = f̂ ĝ, and (̂f ∗ c) = f̂ ĉ. (3.40)

In our notation, the impulse train (Dirac comb) is a mixed convolution:

X def=
∑
k∈Z

δ(·− k) = J1K ∗ δ = 1 ∗ δ (3.41)

It has the important property of being its own Fourier transform:

X̂ = X. (3.42)

See table 3.1 for a list of properties and constructions expressed using the
notation we just presented.

Table 3.1: Some properties and constructions using the notation presented in this section.

Concept Expressed in our notation

Symmetry of ϕ ϕ = ϕ∨

Interpolation property JϕK = δ

Unit integral ϕ ∗ 1 = 1
Partition of unity ϕ ∗ J1K = 1
Cross-correlation of ϕ and ψ aϕ,ψ = ϕ ∗ ψ∨

Biorthogonality of ϕ and ψ Jaϕ,ψK = δ

Auto-correlation of ϕ aϕ = ϕ ∗ ϕ∨

Orthogonality of ϕ JaϕK = δ

Cardinal kernel ϕint JϕK-1∗ ϕ
Dual kernel ϕ̊ JaϕK-1∗ ϕ
Orthogonal kernel φ JaϕK- 1

2 ∗ ϕ



4
Fundamental algorithms

Using the new notation introduced in section 3, we now describe some funda-
mental algorithms in generalized sampling. While none of these algorithms
are novel, the new notation allows more concise (and arguably more intuitive)
derivation.

The algorithms in the next sections address different scenarios based on
the selection of prefilter and reconstruction kernels:

• In interpolation, the input is a sampled representation assumed to be
obtained without prefiltering, or equivalently by using a prefilter ψ
equal to the unit impulse δ. Therefore the goal is to find the unique
reconstruction f̃ that interpolates the samples — among functions in
the space Vϕ of the reconstruction kernel ϕ.

• The technique of orthogonal projection addresses the case where the
prefilter ψ spans the same function space as the reconstruction kernel ϕ,
e.g. the space of piecewise cubic B-splines. The approach is to minimize
the L2 difference between the input signal and the reconstruction.

• Finally, oblique projection considers the case where the prefilter ψ
and reconstruction kernel ϕ span different function spaces. It sets the
reconstruction error to be orthogonal to the prefiltering space.

18
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Table 4.1: Fundamental algorithms and their associated digital filters.

Approach Prefilter Reconstruction Digital filter

Interpolation ψ = δ ϕ q = JϕK-1

Orthogonal projection ψ = ϕ ϕ q = JaϕK-1

Oblique projection ψ ϕ q = Jϕ ∗ ψ∨K-1

Table 4.1 summarizes the digital filter associated with each of the three
approaches, as derived in the next sections. Interestingly, both interpolation
and orthogonal projection can be seen as special cases of oblique projection.

4.1 Interpolation

When the prefiltering process is unknown (or absent if ψ = δ), it is often
desired that the reconstructed function f̃ interpolate the sample values JfψK.
With traditional sampling (figure 1.1), this interpolation property requires:

JfψK = Jf̃ K (4.1)

=
qJfψK ∗ ϕy (4.2)

= JfψK ∗ JϕK. (4.3)

As JfψK is arbitrary, an interpolating reconstruction kernel ϕ must therefore
satisfy

JϕK = δ. (4.4)

As noted earlier, these interpolation constraints may severely hinder the design
of a reconstruction kernel with good approximation properties. Therefore,
instead of requiring the kernel itself to satisfy the interpolation property,
generalized sampling (figure 1.5) introduces a digital filtering stage for that
purpose. We find an appropriate digital filter for interpolation with an arbitrary
kernel ϕ as follows:

JfψK = Jf̃ K (4.5)

= Jc ∗ ϕK (4.6)

= c ∗ JϕK ⇒ (4.7)

c = JfψK ∗ JϕK-1. (4.8)
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In other words,

c = JfψK ∗ q with q = JϕK-1. (4.9)

The convolution of the digital filter q = JϕK-1 with the kernel ϕ is called the
cardinal ϕint (see figure 4.1b):

f̃ = c ∗ ϕ = JfψK ∗ JϕK-1∗ ϕ (4.10)

so that

f̃ = JfψK ∗ ϕint with ϕint = JϕK-1∗ ϕ. (4.11)

We can use (4.4) to verify that ϕint is indeed an interpolating kernel:JϕintK =
qJϕK-1∗ ϕ

y
= JϕK-1∗ JϕK = δ. (4.12)

The key point is that the generalized sampling approach has the advantage of
using the compactly supported ϕ during reconstruction, when performance is
paramount. Since digital filtering with q is performed during preprocessing, it
does not add any computational cost to the reconstruction stage. In the words
of Blu et al. [1999], one obtains “higher-quality at no additional cost”. In
contrast, the cardinal kernel ϕint has infinite support. Finite approximations
have a significantly wider support than ϕ, increasing reconstruction costs.

4.2 Inverse discrete convolution

Discrete convolution by a sequence JϕK as in (4.7) is a linear operator and
therefore expressible in matrix form:JfψK = c ∗ JϕK = Φ c, for some matrix Φ. (4.13)

Inverting the process as in (4.9) is more challenging, as it amounts to solving
a linear system:

c = JfψK ∗ JϕK-1 = Φ-1JfψK. (4.14)

Fortunately, typical matrices Φ have regular structure: for even-periodic exten-
sions, they are almost Toeplitz. We describe an algorithm adapted from Mal-
colm and Palmer [1974] for solving the common case where JϕK = Jp, q. , pK
is symmetric with support width of 3 elements. A similar algorithm appears
in Hummel [1983] in the context of orthogonal projection. The tridiagonal
matrix Φ and its LU -decomposition are:
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.

The factorization is performed and stored only once, then reused to solve
multiple linear systems (one for each column and row in the image). Moreover,
when Φ is diagonally dominant, the factorization is highly compressible, as the
sequence J`0, `1, . . .K quickly converges to a limit value `∞. The last diagonal
element v = 1 + 1/`∞ of matrix U needs to be handled separately.

Computing c = JfψK ∗ JϕK -1 when JϕK has support 3 requires only
3n products and 2n additions. Coincidentally, this is the same cost as comput-
ing JfψK = c ∗ JϕK. If one can make do with a scaled version d = p c of the
solution, for example by pre-scaling the kernel so that p = 1, the computation
requires n fewer products.

The forward- and back-substitutions are very simple, and we include
full source-code in appendix A (function linear_solve, lines 12–32). For
convenience, we also provide the LU -decomposition arising from the cubic
B-spline and O-MOMS interpolation problems. The cubic B-spline has JϕK =
1
6J1, 4. , 1K and needs only 8 coefficients before the sequence converges to
single-precision floating-point. (See lines 160–162.) For the cubic O-MOMS,JϕK = 1

21J4, 13. , 4K and only 9 coefficients are needed (See lines 189–192.)
Our vectorized, multicore implementation of the same algorithm in 2D runs at
800MiPix/s on an Intel Core i7 980X CPU.

An equivalent approach favored by the signal processing community is
to formulate this inverse convolution as a sequence of recursive filters [Hou
and Andrews, 1978, Unser et al., 1991]. The difficulty is dealing with the
poles in q = JϕK-1 and the trick is to factor the filter into cascaded causal
and anticausal parts, each realized as a stable recursive filter. Interestingly,
the operations are almost exactly the same as those described in appendix A.
The only difference is in the treatment of elements close to the boundaries.
Whereas the recursive-filtering approach conceptually extends the input so as
to compute the initial feedback, the LU -factorization simply uses different
coefficients for the elements close to the boundary.
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Even if JϕK has larger support (i.e., W > 4), the inverse convolution can
still be performed efficiently using LU -factorization in a similar way. The
matrices L and U have bandwidth bW+1

2 c, so the forward/back-substitution
steps use several feedback elements, much like higher-order causal/anti-causal
recursive filters.

In signal processing, higher-order recursive filters are sometimes further
factored into chains of first- and second-order recursive filters. This is equiva-
lent to factoring the L and U matrices into products of lower and upper bidiag-
onal or tridiagonal matrices. However, computations using such factorizations
traverse the data additional times and do not save arithmetic operations. Thus,
the additional factorization is not beneficial in modern computer architectures
where memory access is expensive.

A modern parallelization of recursive filters for GPUs recently achieved
over 6GiPix/s on an NVIDIA GTX 480 GPU for the bicubic B-spline inter-
polation problem [Nehab et al., 2011]. The key message is that, whatever
the approach followed or architecture used, the digital processing stage in
generalized sampling is extremely fast.

4.3 Orthogonal projection

We now derive an algorithm to obtain the orthogonal projection Pϕf of the
input signal f into the reconstruction space Vϕ. The algorithm computes the
coefficient array c expressing this projection as Pϕf = c ∗ ϕ. To compute c,
we need to determine the appropriate prefilter ψ and digital filter q. The
orthogonality condition is:

(f−f̃ ) ⊥ Vϕ ⇔
〈
f−f̃ , ϕ(·− k)

〉
= 0 for k ∈ Z, (4.15)

⇔
q
(f−f̃ ) ∗ ϕ∨

y
= 0. (4.16)

From there, q
(f−f̃ ) ∗ ϕ∨

y
= 0 ⇒ (4.17)Jf ∗ ϕ∨K = Jf̃ ∗ ϕ∨K (4.18)

= Jc ∗ ϕ ∗ ϕ∨K (4.19)

= c ∗ Jϕ ∗ ϕ∨K ⇒ (4.20)

c = Jf ∗ ϕ∨K ∗ Jϕ ∗ ϕ∨K-1. (4.21)
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Figure 4.1: Equivalent basis functions for cubic B-splines.

In other words,

c = Jf ∗ ψ∨K ∗ q with ψ = ϕ and q = JaϕK-1. (4.22)

Here, aϕ = ϕ ∗ ϕ∨ is the auto-correlation of ϕ, so that the matrix associated
with the linear system is none other than the Gramiam matrix reached by
Kajiya and Ullner [1981] and Hummel [1983]. It is important to point out
that, unless the output device uses ϕ for reconstruction, it makes little sense
to directly use the coefficient array c for display. It may be necessary to
prefilter Pϕf for display, or at least sample its reconstruction (see section 10
and figure 10.4):

JPϕfK = Jc ∗ ϕK = c ∗ JϕK. (4.23)

Recall that the orthogonal projection Pϕ is equivalent to convolution with
the dual ϕ̊ (figure 4.1c). To find the expression for ϕ̊ and verify that it belongs
to Vϕ, note that1:

c = Jf ∗ ϕ∨K ∗ JaϕK-1 = Jf ∗ ϕ∨K ∗ JaϕK-∨

=
q
f ∗ ϕ∨∗ JaϕK-∨y =

q
f ∗

(
ϕ ∗ JaϕK-1)∨y

1Remember that aϕ = ϕ ∗ ϕ∨ is always symmetric.
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so that

c = Jf ∗ ϕ̊∨K with ϕ̊ = ϕ ∗ JaϕK-1. (4.24)

Thus, the traditional sampling approach would be to set the prefilter ψ = ϕ̊.
The generalized sampling approach lets us avoid working directly with the
dual ϕ̊, which typically has infinite support. We instead prefilter f with the
more convenient, compactly supported kernel ϕ, and convolve with the inverse
of the sampled auto-correlation.

As a side note, it is easy to verify the biorthogonality of ϕ and ϕ̊, i.e.〈
ϕ̊(·− i), ϕ(·− j)〉 = δij , (4.25)

using our notation:

Jϕ ∗ ϕ̊∨K =
q
ϕ ∗

(
ϕ ∗ JaϕK-1)∨y (4.26)

=
q
ϕ ∗ ϕ∨∗ JaϕK-∨y (4.27)

= Jϕ ∗ ϕ∨K ∗ JaϕK-∨ (4.28)

= JaϕK ∗ JaϕK-1 (4.29)

= δ. (4.30)

McCool [1995] explored orthogonal projection in the context of rendering,
but may have mistakenly used the correction filter q = JϕK-1∗ JϕK-1 instead of
q = JaϕK-1 for generalized prefiltering.

Orthogonal kernels It is easy to show (via the frequency domain) that the
ideal low-pass filter sinc equals its own auto-correlation. Because sinc satisfies
the interpolation condition, it happens that sinc is also its own dual, i.e., it is an
orthogonal kernel. This means that the ideal sampling procedure amounts to
the orthogonal projection of function f into the space of bandlimited functions.
Another example of orthogonal kernel is the box filter (its auto-correlation is
the hat filter, which also interpolates). In general, other typical kernels are not
orthogonal, so that ϕ and ϕ̊ are quite different.

Notable equivalent generating functions We have already seen three
generating functions for the same approximation space Vϕ: The basic ϕ itself,
its cardinal ϕint, and its dual ϕ̊. To complete the picture, we now find an
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orthogonal generating function φ for Vϕ. This is mostly of theoretical interest.
To do so, we numerically compute the “convolution square root” of JaϕK-1, via
the Fourier series expansion of DTFT-1/2(JaϕK). Then,

φ = ϕ ∗ JaϕK- 1
2 where JaϕK- 1

2 ∗ JaϕK- 1
2 = JaϕK-1, (4.31)

and we can verify that φ is indeed orthogonal:

Jφ ∗ φ∨K =
q
ϕ ∗ JaϕK- 1

2 ∗
(
ϕ ∗ JaϕK- 1

2
)∨y (4.32)

= Jϕ∗ϕ∨K ∗ JaϕK- 1
2 ∗ JaϕK- 1

2 (4.33)

= JaϕK ∗ JaϕK-1 (4.34)

= δ. (4.35)

Figure 4.1 shows the four bases associated with the cubic B-splines.

4.4 Oblique projection

Unlike in rendering applications, many signal-processing applications typically
have little control over the analysis filter ψ∨ (e.g., it is part of an acquisition
device). Moreover, there may be little control over the reconstruction filter ϕ
(e.g., it is part of a display device). Naturally, this prevents the use of the or-
thogonal projection. Instead, given both ψ∨ and ϕ, consistent sampling [Unser
and Aldroubi, 1994] is a strategy for obtaining the oblique projection Pϕ⊥ψf
of a signal f into space Vϕ, where the residual is orthogonal to Vψ (rather than
being orthogonal to Vϕ):q

(f − f̃ ) ∗ ψ∨
y

= 0 ⇒ (4.36)Jf ∗ ψ∨K = Jf̃ ∗ ψ∨K (4.37)

= Jc ∗ ϕ ∗ ψ∨K (4.38)

= c ∗ Jϕ ∗ ψ∨K ⇒ (4.39)

c = Jf ∗ ψ∨K ∗ Jϕ ∗ ψ∨K-1. (4.40)

In other words,

c = JfψK ∗ q with q = Jϕ ∗ ψ∨K-1 = Jaϕ,ψK-1, (4.41)

where aϕ,ψ is the cross-correlation of ϕ and ψ.
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An equivalent characterization follows from the projection property. If a
signal f = c ∗ ϕ already belongs to Vϕ, then its oblique projection Pϕ⊥ψf
must be f itself (hence, “consistent”):

c ∗ ϕ = Pϕ⊥ψ (c ∗ ϕ) ⇒ (4.42)

c = Jc ∗ ϕ ∗ ψ∨K ∗ q = c ∗ Jϕ ∗ ψ∨K ∗ q ⇒ (4.43)

q = Jϕ ∗ ψ∨K-1 (4.44)

Yet another characterization is that oblique projection selects q to make
the effective analysis filter q∨∗ ψ biorthogonal to the reconstruction kernel ϕ:

Jϕ ∗ (q∨∗ ψ)∨K = δ ⇒ (4.45)Jϕ ∗ q ∗ ψ∨K = δ ⇒ (4.46)Jϕ ∗ ψ∨K ∗ q = δ ⇒ (4.47)

q = Jϕ ∗ ψ∨K-1. (4.48)

The approximation error of the oblique projection is bounded by

‖f−Pϕf‖ ≤ ‖f−Pϕ⊥ψf‖ ≤ (cos θψ,ϕ)-1‖f−Pϕf‖, (4.49)

where θψ,ϕ is a measure of the “maximum angle” between the two spaces, as
computed from their spectral coherence [Unser and Aldroubi, 1994].
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Translation and scaling

We next examine how the generalized sampling algorithms can be applied to
the problems of signal translation and scaling. These operations are obviously
crucial in processing images.

5.1 Translation of discretized signals

The common practice for translating a discrete signal by an offset h is to
sample the translated reconstruction f̃(· − h) = τh∗ f̃ with no prefiltering
(i.e., with ψ = δ):

ch = Jτh∗ f̃ K = Jτh∗ c ∗ ϕK = c ∗ Jτh∗ ϕK. (5.1)

The result is the discrete convolution between the coefficient array and the
sampled, translated basis ϕ.

Translation using generalized sampling When the reconstruction ker-
nel includes a digital filter r, equation (5.1) does not directly produce the
desired coefficient array. Instead, we must apply the filter:

ch = c ∗ Jτh∗ ϕK ∗ r. (5.2)

27
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The new coefficient array ch is then ready for reconstruction with ϕ (and
further processing).

To complete the generalization, we must add a prefiltering stage to equa-
tion 5.2. Thanks to our notation, this can be done with simple algebraic
manipulations:

ch =
q
(τh∗ f̃)∗ (p ∗ ψ)∨

y
∗ r (5.3)

= Jτh∗ c ∗ ϕ ∗ ψ∨K ∗ p∨∗ r (5.4)

= c ∗ Jτh∗ aϕ,ψK ∗ p∨∗ r (5.5)

= c ∗ q with q = Jτh∗ aϕ,ψK ∗ p∨∗ r. (5.6)

To represent naïve translation within this generalized sampling framework,
simply eliminate prefiltering by setting ψ = δ and p = r = δ in (5.6). The
result is (5.1). The generalized sampling method, however, can also express
more sophisticated strategies.

Least-squares translation Unlike the space of band-limited func-
tions Vsinc, the translation τh∗ f̃ of a function f̃ ∈ Vϕ does not in general
belong to Vϕ. Unser et al. [1995b] therefore explore forming its orthogonal
projection Pϕ(τh∗ f̃) into Vϕ and then sampling it. This is accomplished by
setting p ∗ ψ = ϕ̊ = ϕ ∗ JaϕK-1 and r = δ in (5.6):

ch = c ∗ Jτh∗ aϕK ∗ JaϕK-1 so that JPϕ(τh∗ f̃)K = ch∗ JϕK. (5.7)

They further observe that (5.7) may be rewritten to resemble (5.1):

ch = c ∗
q
τh∗ (aϕ)int

y
. (5.8)

This means that least-squares translation in space Vϕ is similar to naïve trans-
lation in the space Vaϕ . For example, if ϕ = βn is the B-spline of degree n
(and order L = n+ 1), then aϕ = β2n+1 is the B-spline of degree 2n+ 1
(and order L = 2n+ 2). Therefore, in this case, least-squares translation is
equivalent to performing the naïve translation in a space that has twice the
approximation order.

Note that in all of the translation algorithms, the reconstruction and pre-
filter kernels are sampled into the digital filter, so computing the translated
sequences only involves a discrete convolution.
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Figure 5.1: Scaling a sequence using generalized sampling. Given the input sequence c, the
reconstruction f̃ = c ∗ ϕ is scaled by a factor s. The scaled reconstruction f̃s is prefiltered
and sampled, and the resulting sequence is convolved with a digital filter q to produce the new
sequence cs.

5.2 Scaling of discretized signals

Scaling a discrete sequence is a more difficult operation than translation
because in the general case it cannot be computed as a single convolution. The
overall process is illustrated in figure 5.1.

We use the shorthand notation fs
def= f(·/s) to denote f after a uniform

scale by factor s. Using explicit sampling rates as in (3.4) and (3.7), we first
note a few convenient relations:

(f ∗ g)s = 1
s fs ∗ gs, (5.9)

(c ∗ ϕ)s = c ∗s ϕs, (5.10)JfsK = JfK 1
s
, and (5.11)

f ∗ δs = sf. (5.12)

In scaling a discrete sequence, we distinguish between magnification
(upsampling, s > 1) and minification (downsampling, s < 1). These cases are
treated independently.

When magnifying, the prefilter becomes redundant in the presence of a
good reconstruction filter. To see this, recall that a good reconstruction filter
has a cut-off frequency ≈ 1

2 cycles per input sample, whereas a good prefilter
has cut-off at ≈ 1

2 cycles per output sample. Since the scaling operation is
such that the output sampling rate is s times the input sampling rate, the
reconstruction filter’s cut-off frequency is s times lower than the prefilter’s.
Therefore, common practice is to sample the scaled reconstruction without
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any prefiltering (i.e., ψ = δ when s ≥ 1):

q
f̃s ∗ δ∨

y
= s

q
(f̃ ∗ δ∨1

s
)s
y

(5.13)

= s
q
f̃ ∗ δ∨1

s

y
1
s

(5.14)

= Jf̃ K 1
s

(5.15)

= Jc ∗ ϕK 1
s
. (5.16)

See function upsample in lines 198–216 of appendix A for source-code
implementing this algorithm.

Conversely, when minifying, it is the effect of the reconstruction filter that
is hidden by the prefilter. Accordingly, common practice is to prefilter the
discrete signal without any reconstruction (i.e., ϕ = δ when s ≤ 1):

Jf̃s ∗ ψ∨K =
q
(c ∗ δ)s∗ ψ∨

y
(5.17)

=
q
c ∗s δs∗ ψ∨

y
(5.18)

= s
q
c ∗s ψ∨

y
(5.19)

= s
q
(c ∗ ψ∨1

s
)s
y

(5.20)

= s
q
c ∗ ψ∨1

s

y
1
s

(5.21)

=
q
c ∗ (sψ1

s
)∨
y

1
s
. (5.22)

Note that the factor s within sψ1
s

in (5.22) acts to preserve the integral of the
kernel ψ as it is scaled. In general, if s is not an integer, sψ1

s
does not satisfy a

partition of unity even when ψ does. It is therefore common practice to add
a normalization step to the sampling process. To do so, we accumulate the
weights assigned to each entry in c, and divide the resulting sampled value
by this number. The normalization ensures the resampled sequence has the
same average level as the input. See function downsample in lines 218–247
of appendix A for the corresponding source-code.

Scaling using generalized sampling As we did for translation, we
now derive an efficient algorithm for finding the coefficient array cs of a
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scaled signal, but employing generalized reconstruction and prefiltering:

cs =
q
f̃s∗ (p ∗ ψ)∨

y
∗ r (5.23)

= Jf̃s∗ ψ∨K ∗ p∨∗ r (5.24)

= Jc ∗s ϕs ∗ ψ∨K ∗ p∨∗ r (5.25)

= Jc ∗s (sϕ ∗ ψ∨1
s
)sK ∗ p∨∗ r (5.26)

= s
q
c ∗ ϕ ∗ ψ∨1

s

y
1
s
∗ p∨∗ r (5.27)

= s
q
c ∗ aϕ,ψ1

s

y
1
s
∗ p∨∗ r. (5.28)

The traditional algorithms (5.16) and (5.22), are special cases of (5.28). Note
that the mixed convolution and the sampling operation use different spacings
in (5.16), (5.22), and (5.28), and relation (3.17) does not apply. Therefore,
we may have to evaluate the cross-correlation term aϕ,ψ1

s
at the arbitrary

positions i/s− j, with i, j ∈ Z. This is inconvenient, because any closed-
form expression for aϕ,ψ1

s
is specific to a given s, which may only be known

at runtime. Nevertheless, since aϕ,ψ1
s

has compact support, we can compute
all required values once and reuse them for all rows and columns in the image.
Furthermore, when s is rational, the values repeat and we can compute a single
cycle. Finally, when 1

s is an integer, we can simply compute c ∗ Jaϕ,ψ1
s
K and

decimate the results by 1
s or, better yet, compute only the elements in the

discrete convolution that remain after decimation.

Repeated integration The computation required to evaluate a single sam-
ple from c ∗ ψ1

s

∨ in (5.22) or from c ∗ aϕ,ψ1
s

in (5.28) increases proportionally
to 1

s (i.e., with the kernel support). Fortunately, when downsampling an entire
image, the increased computation per sample is cancelled by the corresponding
reduction in the total number of samples required.

Nevertheless, many applications (such as texture filtering) demand re-
peated access to individual samples. Heckbert [1986] introduces a repeated
integration strategy (based on integrated arrays [Crow, 1984, Perlin, 1985])
that enables this sampling in constant time for piecewise polynomial kernels.
Furthermore, the method allows us to avoid computing the value of scaled ker-
nels altogether. As we have seen, this is particularly convenient when dealing
with aϕ,ψ1

s
.
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Heckbert considers the case of a B-spline analysis filter ψ = βn, and sets
ϕ = δ since reconstruction does not play a significant role in minification.
Muñoz et al. [2001] reach the same algorithm, while including reconstruction
with ϕ = βm and a digital filtering stage. In our notation, (5.28) becomes:

cs = s
q
c ∗ ϕ ∗ (βn1

s
)∨
y

1
s
∗ p∨∗ r (5.29)

= s
q
c ∗ ϕ ∗ βn1

s

y
1
s
∗ p∨∗ r (5.30)

Before delving into the derivation, we first provide high-level intuition.
Piecewise polynomial functions can be expressed as linear combinations of
shifted one-sided power functions. The expression for the B-spline βn can be
seen in (3.34) and only involves u∗(n+1). As is apparent from (3.35), scaling a
one-sided power function is equivalent to a multiplication by a constant factor:(

u∗(n+1))
1
s

= sn u∗(n+1). (5.31)

Finally, sampling a mixed convolution with a one-sided power function can be
performed in constant time with a combination of precomputed running sums
(i.e., higher-order summed-area tables). In the case of B-splines, it turns out
that only the (n+ 1)th-order sum is required.

Consider the expression for the scaled B-spline function βn1
s

from (3.34):

βn1
s

=
(
∆∗(n+1) ∗ u∗(n+1) ∗ τ-(n+1)/2

)
1
s

(5.32)

= s
(
∆∗(n+1) ∗ u∗(n+1))

1
s
∗
(
τ-(n+1)/2

)
1
s

(5.33)

= s∆∗(n+1) ∗ 1
s

(
u∗(n+1))

1
s
∗
(
τ-(n+1)/2

)
1
s

(5.34)

= ∆∗(n+1) ∗ 1
s

(
u∗(n+1))

1
s
∗ τ-(n+1)/(2s) (5.35)

= sn ∆∗(n+1) ∗ 1
s
u∗(n+1) ∗ τ-(n+1)/(2s). (5.36)

On the right-hand side of the mixed convolution with spacing 1
s in (5.36), we

can see almost all terms in the definition of the unscaled B-spline

βn = ∆∗(n+1) ∗ u∗(n+1) ∗ τ-(n+1)/2. (5.37)

To obtain the missing terms without changing results, convolve (5.36) on the
right-hand side with1:

δ = τ-(n+1)/2 ∗ τ(n+1)/2 and δ = u∗(n+1) ∗∆∗(n+1). (5.38)

1We must be careful because the mixed convolutions involve different spacings.
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Thus,

βn1
s

= sn ∆∗(n+1) ∗ 1
s
βn ∗ u∗(n+1) ∗ τ-(n+1)(1−s)/(2s). (5.39)

Substituting into (5.30), we finally get

cs = sn+1qc ∗ (∆∗(n+1) ∗ 1
s
ϕ ∗ βn ∗ τh ∗ u∗(n+1))y

1
s
∗ p∨∗ r (5.40)

= sn+1q∆∗(n+1) ∗ 1
s

(
c ∗ ϕ ∗ βn ∗ τh ∗ u∗(n+1))y

1
s
∗ p∨∗ r (5.41)

= sn+1qc ∗ u∗(n+1) ∗ ϕ ∗ βn ∗ τh
y

1
s
∗∆∗(n+1) ∗ p∨∗ r (5.42)

=
q
d ∗ φ

y
1
s
∗ q, (5.43)

where

d = c ∗ u∗(n+1), (5.44)

φ = sn+1 ϕ ∗ βn ∗ τh, with h = − (n+1)(1−s)
2s , and, (5.45)

q = ∆∗(n+1) ∗ p∨∗ r. (5.46)

To summarise, the steps of the algorithm are as follows:

1. Obtain a new sequence d by applying u∗(n+1) to the input array c (thus
at input resolution). This is equivalent to n+ 1 successive running sums,
which can also be implemented (more efficiently) as a single recursive
filter of order n+ 1;

2. Reconstruct with ϕ∗βn shifted by h, multiply by sn+1, and sample with
spacing 1

s . The cost of computing each output sample is independent
of s, requiring n+1 coefficient array accesses when ϕ = δ andm+n+2
when ϕ = βm.

3. Apply the digital filter q to the output (thus at output resolution). This
combines a direct convolution with filter ∆∗(n+1), which has support
n+ 2, and with filters p∨ and r.

As noted by Heckbert [1986] and Muñoz et al. [2001], the repeated inte-
gration framework can be extended beyond B-splines to arbitrary piecewise
polynomial kernels such as the Catmull-Rom filter. However, this generaliza-
tion may require the computation of multiple coefficient arrays di = u∗i∗ c.
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Least-squares scaling Unser et al. [1995a] explore the use of orthogonal
projection for scaling. This is accomplished by setting ψ ∗ p = ϕ̊ = ϕ ∗ JaϕK-1

and r = δ in (5.28):

cs = s
q
c ∗ aϕ,ϕ1

s

y
1
s
∗ JaϕK-1 so that

q
Pϕf̃s

y
= cs∗ JϕK. (5.47)

Restricting ϕ to the family of B-splines, Unser et al. [1995a] provide explicit
formulas for the cross-correlation function in the piecewise-constant ϕ = β0

and piecewise-linear ϕ = β1 cases, and note that for higher orders the cross-
correlation function aβn,βn1

s

quickly converges to a Gaussian (by the Central
Limit Theorem).

In contrast, Lee et al. [1998] approach the problem from the consistent
sampling perspective. The idea is to reconstruct with ϕ but prefilter with a
kernel ψ that simplifies the computations. Lee et al. describe how to efficiently
implement the case where ϕ = βn and ψ = β0. Recall from (4.41) in
section 4.3 that when reconstructing with ϕ and prefiltering with ψ, the digital
correction filter that achieves oblique projection is simply q = Jϕ ∗ ψ∨K-1.
Applying this correction to (5.28) and setting p = r = δ we obtain:

cs = s
q
c ∗ aϕ,ψ1

s

y
1
s
∗ Jaϕ,ψK-1 so that

q
Pϕ⊥ψf̃s

y
= cs ∗ JϕK. (5.48)

Muñoz et al. [2001] apply the repeated integration strategy to the problem
of oblique projection of scaled signals, essentially combining the work of Lee
et al. [1998] and of Heckbert [1986]. To do so, simply set ϕ = βm, p = δ,
and r = Jaϕ,βnK-1 = Jβm+n+1K-1 in (5.42) to reach:

cs = sn+1qc ∗ u∗(n+1) ∗ βm+n+1 ∗ τh
y

1
s
∗∆∗(n+1) ∗ Jβm+n+1K-1

.

As Muñoz et al. [2001] note, the extension of the repeated integration method
to linear combinations of B-splines and their derivatives allows the method to
support the entire MOMS family [Blu et al., 2001].

Nearest-neighbor and linear filtering We can now give precise defi-
nitions for the terms “linear” and “nearest-neighbor” that are widely used in
relation to magnification and minification. Using (5.28) as a starting point, we
first eliminate the digital filtering by setting p = q = δ since these are tradi-
tional algorithms. Intuitively, nearest-neighbor magnification means directly
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sampling the box reconstruction (ϕ = β0, ψ = δ):

cs = Jc ∗ β0K 1
s
. (5.49)

Conversely, linear magnification means directly sampling the hat reconstruc-
tion (ϕ = β1, ψ = δ):

cs = Jc ∗ β1K 1
s
. (5.50)

In a perhaps counter-intuitive fashion, linear minification means directly pre-
filtering with the box kernel (ϕ = δ, ψ = β0):

cs = s
q
c ∗ β0

1
s

y
1
s
. (5.51)

This breaks the analogy to linear magnification, which uses the hat filter.
Finally, nearest-neighbor minification uses the exact same equation as nearest-
neighbor magnification. But since s ≤ 1 for minification, the absence of a
prefilter potentially leads to severe aliasing.

Pyramid specialization (Mipmaps) Equation (5.28) describes a family
of downscaling algorithms parametrized by the choices of generalized analysis
and reconstruction kernels, and by the scaling factor s. Here we describe a
specialization that is useful in the generation of dyadic pyramids or mipmaps
(i.e., s = 1

2 ).
As discussed later in section 10, the cardinal cubic B-spline, i.e.

ψ ∗ p = (β3)int, is an excellent prefilter. Using the traditional approach of
reconstructing with the impulse ϕ ∗ r = δ and substituting in (5.28), we reach
the following algorithm for the recursive generation of level i in an image
pyramid, starting from an input image f1:

fi = 1
2Jβ3K-1∗

q
fi-1∗ Jβ3

2Ky2. (5.52)

The direct convolution is with kernel Jβ3
2K, which has support 7. In the case

of a dual-grid mipmap structure (see section 8), the direct convolution kernel
is replaced by Jβ3

2 ∗ τ1/2K, which has support 8. Only the elements surviving
decimation must be computed. These elements undergo inverse convolution
with kernel Jβ3K, which is symmetric with support 3, as per section 4.2.
Exploiting separability and normalization, the full 2D process requires only 35
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floating-point operations per output pixel, per channel (only 27 with multiply-
add instructions (MADs)). In comparison, Catmull-Rom kernel requires 30
(22 with MADs), and a Lanczos windowed sinc (W = 6) requires 49 (34 with
MADs).



6
Approximation of derivatives

In computer graphics and visualization, it is often desired to reconstruct
not only the function but also its derivatives. For example, first derivatives
contribute tangent vectors for surface shading, and second derivatives allow
edge detection with subpixel accuracy.

The theory presented so far applies equally well to the nth derivative f (n)

of a given function f , so long as we have access to f (n). In that case, we can
subject it to the generalized sampling pipeline and find its approximation in
the order-L space Vϕ of our choice:

f̃ (n) = Jf (n) ∗ ψ∨K ∗ q ∗ ϕ, (6.1)

in the same way we would have obtained an approximation to f :

f̃ = Jf ∗ ψ∨K ∗ q ∗ ϕ. (6.2)

However, our access is often restricted to f̃ . Given only the coefficient
array Jf ∗ ψ∨K, we wish to obtain an approximation to f (n). The most obvious
approach is to differentiate f̃ , which is equivalent to reconstructing with the
derivative ϕ(n) of the original kernel:

(f̃ )(n) =
(Jf ∗ ψ∨K ∗ q ∗ ϕ)(n) = Jf ∗ ψ∨K ∗ q ∗ ϕ(n). (6.3)

37
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Unfortunately, reasoning about the approximation order of this scheme is not
easy. We may even fail to obtain an approximation to f (n) as we reduce the
sample spacing. For one thing, the approximation order cannot be higher than
the order of the new approximation space Vϕ(n) where (f̃ )(n) lives.

Some important tools for understanding and solving this problem are
presented in the work of Condat and Möller [2011]. The insight is to use
properties (3.29) and (3.34):

Jf ∗ ψ∨K =
q
f ∗

(
(δ′)∗n ∗ u∗n

)
∗ ψ∨

y
(6.4)

=
q
f (n) ∗ u∗n ∗ ψ∨

y
(6.5)

=
q
f (n) ∗ u∗n ∗ βn-1 ∗ τn/2 ∗ ψ∨

y
(6.6)

=
q
f (n) ∗ βn-1 ∗ τn/2 ∗ ψ∨

y
∗ u∗n (6.7)

and therefore

Jf ∗ ψ∨K ∗∆∗n =
q
f (n) ∗ βn-1 ∗ τn/2 ∗ ψ∨

y
(6.8)

=
q
f (n) ∗

(
βn-1 ∗ τ−n/2 ∗ ψ

)∨y (6.9)

=
q
f (n) ∗ ξ∨

y
, with ξ = βn-1 ∗ τ−n/2 ∗ ψ. (6.10)

In other words, starting from the samples of f filtered with ψ, and after
applying the discrete derivative ∆∗n, we obtain samples of f (n), but these
samples come filtered with ξ instead. We can now apply our standard tools to
reason about the asymptotic behavior of the approximation

f̃ (n) = Jf (n) ∗ ξ∨K ∗ q ∗ ϕ
= Jf ∗ ψ∨K ∗∆∗n ∗ q ∗ ϕ.

(6.11)

For example, to guarantee that we achieve the optimal approximation order
in Vϕ, we can use oblique projection and set q = Jaϕ,ξK-1. Another remarkable
consequence from this analysis is that we can obtain from samples of f the
exact orthogonal projection of f (n) in space Vβn-1(·+n

2 ), since in that case the
oblique projection reduces to orthogonal projection.

Concrete examples Consider the typical case in which we are provided
with samples from f and we assume ψ = δ. As an example, we derive a
4th-order approximation to the second derivative f (2) of f in the space Vβ3 of
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cubic B-splines. To do so, we simply use oblique projection by setting ψ = δ

and ϕ = β3 in (6.11), from which ξ = β1 ∗ τ1:

f̃ (2) = Jf (2) ∗ ξ∨K ∗ Jϕ ∗ ξ∨K-1∗ ϕ (6.12)

= JfK ∗∆∗2 ∗
q
β3 ∗ β1 ∗ τ1

y-1∗ β3 (6.13)

= JfK ∗ J1. ,−2, 1K ∗ qβ5 ∗ τ1
y-1∗ β3 (6.14)

= JfK ∗ J1, -2. , 1K ∗ qβ5y-1∗ β3. (6.15)

Incidentally, this is equivalent to taking the second derivative of the interpola-
tion of f in the space of quintic B-splines, since

(β5)(2) = (β1 ∗ β3)(2) (6.16)

=
(
∆∗2 ∗ u∗2 ∗ τ−2/2

)(2) ∗ β3 (6.17)

= ∆∗2 ∗ τ−1 ∗ β3 (6.18)

= J1, -2. , 1K ∗ β3. (6.19)

Conversely, the naïve idea of differentiating the interpolation of f in space
Vβ3 is equivalent to performing the oblique projection of f (2) into space Vβ1 ;
it is therefore only a second-order approximation strategy.

Similarly, for the 4th-order approximation to the first derivative, we have:

f̃ ′ = JfK ∗∆ ∗
q
β4 ∗ τ1/2

y-1∗ β3. (6.20)

Note the half-pixel shift that breaks the analogy with the derivative of the
interpolation in space Vβ4 , which would result in:

f̃ ′ = JfK ∗∆ ∗
q
β4y-1∗ β3 ∗ τ−1/2. (6.21)

The latter is, of course, what we would obtain by performing the oblique
projection of f ′ in the space of half-shifted cubic B-splines Vβ3(·+ 1

2 ), and
therefore is also a 4th-order approximation scheme.

Often, we must reconstruct estimates for both f and f (n). The concrete
methods we described so far assume we have independent coefficient arrays
for f̃ and f̃ (n). This is because the digital filters must be precomputed, since
they are inverse discrete convolutions. In volume-rendering applications that
require gradients, keeping 4 versions of the coefficient volume (for f and its 3
partial derivatives) can be prohibitive in terms of memory consumption. Fortu-
nately, we are not required to use oblique projection to guarantee an optimal
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approximation order to f (n). (See section 9 for details.) In recent follow-up
work, Alim et al. [2010] used this additional freedom to derive FIR filters that
can be applied locally, on demand, on the interpolating coefficients for f . This
allows sharing the same coefficient vector for optimal-order approximations
to f and its partial derivatives.



7
Generalized prefiltering and estimator variance

We previously explored how images can be downscaled using a generalized
prefilter, expressed as a mixed convolution of a compact kernel ψ and a digital
filter p (section 5.2). This strategy attains efficiency due to the compactness
of kernel ψ yet reduces aliasing and maintains sharpness due to the improved
frequency response of the effective kernel ψ ∗ p.

We now apply this same generalized prefiltering strategy to the case
where the input function f is defined procedurally rather than sampled. This
is particularly relevant to computer graphics because procedural definitions
abound in the rendering process:

• Vector representations define shapes with intricate boundaries;

• Procedural texturing assigns material properties to surfaces;

• Procedural lighting defines local illumination over the surface;

• Procedural shading evaluates color from materials and lighting;

• Perspective projection maps scenes surfaces to the rendered image.

An important challenge in rendering is that any of these procedures may
introduce high frequencies into the rendered image f . Troublesome cases

41
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include sharp outlines, noise textures, shadow discontinuities, specular high-
lights, surface silhouettes, and perspective distortions near vanishing points.

The general approach to overcome this problem of discontinuities is to
prefilter the function f , typically by supersampling. We evaluate f at several
positions per pixel and integrate these samples using a prefilter kernel. The
resulting estimate at each pixel suffers from aliasing and noise. Aliasing is
attenuated by improving the frequency response of the prefilter, and noise is
attenuated by reducing the variance of the supersampling estimate. We next
analyze these characteristics in the generalized sampling pipeline. In particular,
we investigate whether it is advantageous to reuse samples across pixels when
evaluating prefilter kernels.

Computing the prefiltered sample at pixel k from signal f entails evaluat-
ing the integral:

bk =
(
f ∗ ψ∨

)
(k) =

∫ ∞
-∞
f(x)ψ(x− k) dx. (7.1)

When exact evaluation is impractical, the integral is approximated by Monte
Carlo integration (i.e, by supersampling). The idea is to rewrite the inte-
gral as an expectation, and to approximate it with a sample mean. Although
changing the sample distribution can reduce the variance of the estimator
(see quasi-Monte Carlo, importance sampling), or even reshape its spectral
properties [Dippé and Wold, 1985], here our interest is analyzing the effect of
the generalized prefilter ψ ∗ p on the variance of the estimator.

Sharing samples To share samples between pixels, we start by tiling the
real line with the support of uniformly distributed random variables. To that
end, let Xi ∼ U(−.5, .5)+ i−oW , where oW takes value .5 when the support
width W of ψ is even, and 0 otherwise. Using Xi, we can rewrite (7.1) as a
sum of expectations:

bk =
∑
i∈Z

EXi
(
f(·)ψ(· − k)

)
, (7.2)

since EXi(g) =
∫
g(x) pXi(x) dx and the uniform probability density func-

tion pXi = 1. To make the analysis practical, we assume that f is stationary
and f(Xi) is uncorrelated to Xi. This is reasonable if the frequency content
of f is much higher than the supersampling rate. Therefore, EXi(f) = EXj (f)
for all i and j, and we denote the common value by EX(f).
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The unbiased Monte Carlo estimator for bk is:

b̂k = 1
m

m∑
j=1

∑
i∈Z

f(xi,j)ψ(xi,j − k), (7.3)

where m variates xi,j are drawn from each Xi. Because samples are shared
between b̂k and b̂k+w whenever |w| < W , the estimators b̂k and b̂k+w are not
independent random variables. The covariance is:

Cov(b̂k, b̂k-w) = 1
mEX(f2)

∑
i EXi

(
ψ(·)ψ(·+ w)

)
− 1

mE2
X(f)

∑
i EXi(ψ) EXi

(
ψ(·+ w)

)
,

(7.4)

and the variance (i.e. w = 0) simplifies to:

Var(b̂k) = 1
mEX(f2)

∑
iEXi(ψ2)− 1

mE2
X(f)

∑
iE2
Xi

(ψ). (7.5)

In other words, the kernels that reduce the variance the most are those with
small

∑
iEXi(ψ2) and large

∑
iE2
Xi

(ψ).
As for the digital filter p, it acts by computing a weighted sum of b̂k:

c = p ∗ b ⇒ ĉk=
∑
i∈Z

pib̂k−i. (7.6)

Keeping in mind that the bk are not independent,

Var(ĉk) =
∑
w∈Z

∑
i∈Z

pipi+w Cov(b̂k-i, b̂k-i-w) (7.7)

=
W−1∑

w=−W+1
(ap)-w Cov(b̂k, b̂k-w). (7.8)

Only 2W − 1 elements from sequence ap = p ∗ p∨ are associated to
nonzero covariances. Furthermore, since ap is symmetric, only W of them are
distinct. These can be computed exactly via integrals of the DTFT of p (using
Parseval’s theorem and the time-shift property). Substituting (7.4) and (7.5)
into (7.8), and collecting together the terms multiplying EX(f2) and E2

X(f)
into coefficients Sψ,p and sψ,p, respectively, we reach our final expression for
the variance:

Var(ĉk) = 1
m

(
Sψ,p EX(f2)− sψ,p E2

X(f)
)
. (7.9)
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Table 7.1: Analysis of variance when supersampling with various prefilters. Constants Sψ,p,
sψ,p, Nψ,p, and nψ,p, are the factors from (7.9) and (7.13). Column σU gives the standard
deviation of estimator ĉk using m = 1 sample per unit pixel area and signal f∼ U(0,1)
uniformly distributed. (βNint the cardinal B-splines; K the Catmull-Rom filter; M the Mitchell-
Netravali filter.)

Prefilter

Sharing samples No sample sharing

Sψ,p sψ,p σU Nψ,p nψ,p σU

1D 2D 1D 2D 1D 2D 1D 2D 1D 2D 1D 2D

β5
int .92 .84 .70 .49 .36 .40 29.3 856 12.4 153 2.6 15.8
β3

int .87 .76 .66 .43 .36 .38 6.64 44.1 3.46 12.0 1.16 3.42
Lanczos .89 .79 .67 .45 .36 .39 5.33 28.4 .994 .988 1.24 3.03
K .81 .66 .59 .35 .35 .37 3.28 10.6 1 1 .914 1.81
M .68 .46 .53 .28 .31 .29 2.73 7.43 1 1 .812 1.49
β0 1 1 1 1 .29 .29 1 1 1 1 .29 .29

No sample sharing The analysis is simpler when no sample-sharing is
involved. We use independent variables Y, uniformly distributed over the
support Ω of ψ (with area AΩ). Equation (7.3) simplifies to:

b̂k = AΩ
m

m∑
j=1

f(yj)ψ(yj − k). (7.10)

Independence also leads to simpler versions of (7.5) and (7.8):

Var(b̂k) = A2
Ω
m EY (f2) EY (ψ2)− A2

Ω
m E2

Y (f) E2
Y (ψ), and (7.11)

Var(ĉk) = ‖p‖2 Var(b̂k). (7.12)

Collecting the terms on EY (f2) and E2
Y (f) into coefficients Nψ,p and nψ,p,

respectively, we reach an expression analogous to (7.9):1

Var(ĉk) = 1
m

(
Nψ,p EY (f2)− nψ,p E2

Y (f)
)
. (7.13)

In the second term of (7.11), note that EY (ψ) = 1/AΩ if the kernel ψ has
unit integral. Therefore this second term simplifies to − 1

mE2
Y (f), which is

independent of the choice of kernel ψ. Consequently, we get nψ,p ≈ 1 for all
the traditional kernels, i.e. those for which the digital filter p is the identity.
(The Lanczos kernel does not precisely have unit integral, so its value nψ,p
differs slightly from 1.)

1Note that E2
Y (ψ) = 1 for normalized prefilters.
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(a) δ (b) β0 (c) M (d) K

(e) Lanczos (f) β3
int (g) β3

int (stratified) (h) β3
int (importance)

Figure 7.1: A 1282 zonal plate, rendered with 52 stratified samples per pixel spacing area. (a-f)
Various prefilters show particular sharpness and aliasing-suppression properties, but lead to
similar noise reduction. (g,h) Sharing of samples is crucial to prevent the digital filtering stage
from boosting noise, as seen when we independently integrate each pixel with 202 stratified
samples (g), or even when using 400 importance-samples (h).

Discussion The values of constants Sψ,p, sψ,p Nψ,p and nψ,p for a variety
of filtering strategies are shown in table 7.1. As a measure of visible noise, the
table also lists the standard deviation of estimators (m = 1) when sampling
from a white-noise function.

As expected, the prefilter that gives the greatest factor in variance reduction
is the box filter, but its low-pass properties are lacking (see figure 7.1b). The
Mitchell-Netravali filter is noteworthy in having similar variance reduction
and greatly improved response.

The most important takeaway from this analysis is that the remaining
filters (in particular, the nice cardinal splines highlighted in blue) are not that
much worse in terms of variance reduction, as long as samples are shared.
The correlations due to sharing act to attenuate the effect of the digital filter p
over the variance, which is otherwise large (as highlighted in red in the table).
In fact, sharing samples performs better then not sharing even when the
number of samples integrated under each kernel support is the same in both
cases (compare figure 7.1f,g), and even when using importance sampling
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(compare figure 7.1f,h). And of course, sharing samples is a huge benefit
computationally, as it significantly reduces the number of evaluations of the
input signal.



8
Practical considerations

8.1 Grid structure

Given a function f defined over domain [0, 1], there are several conventions
for where to position n uniformly spaced samples. The simplest may be the
primal grid structure, which places sample ck at position k/n. However, this
leads to asymmetry at the boundaries since the first sample is at 0 and the last
sample is at (n−1)/n 6= 1. Samples can also be placed at positions k/(n−1)
but this requires non-power-of-two resolutions in an image pyramid. For these
reasons, computer graphics usually prefers the dual grid structure, which
places sample ck at position (k + 1

2)/n. We have adopted the primal structure
during our derivations, but it is easy to transition between the two. Given
the sample spacing T = 1/n, the primal-grid operations of sampling and
reconstruction are:

cT =
q
f ∗ ψ∨T

y
T
⇐⇒ f̃ = cT ∗T ϕT , (8.1)

whereas the dual-grid counterparts are:

cT =
q
f ∗ ψ∨T

(·− T
2
)y
T
⇐⇒ f̃ = cT ∗T ϕT

(·− T
2
)
. (8.2)

In a multiresolution representation, it is useful to obtain a nesting of the
function spaces defined at the various resolutions, so that any reconstruction
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at a coarser level can be represented exactly in the space of reconstructions at
finer levels. The B-spline family of kernels offers this refinability. The main
constraint is that even-degree kernels must follow a primal structure, whereas
odd-degree kernels must follow a dual structure. Thus, for compatibility with
the dual-grid structure, we often use B-splines of degree 3 and 5.

8.2 Efficient use of piecewise-polynomial kernels

To illustrate the efficient use of piecewise-polynomial kernels, we examine the
common operations of sequence magnification and minification discussed in
section 5.2. We start with an intuitive implementation.

The task in magnification is to obtain the sequence cs = Jc ∗ ϕK 1
s

ex-
pressed in (5.16). Assuming a reconstruction kernel ϕ with support W :

(cs)j =
∑
i∈Z
ci ϕ(j/s− i) =

rj∑
i=`j

ci ϕ(j/s− i), with

`j =
⌈
j/s−W/2

⌉
and rj =

⌊
j/s+W/2

⌋
.

(8.3)

This is the intuitive algorithm implemented by the upsample function in
appendix A, lines 198–216 (except for using the dual grid structure).

The minification formula starts from cs =
q
c ∗ (sψ1

s
)∨
y

1
s

as in (5.21).
Assuming this time an analysis filter ψ with support W :

(cs)j = s
∑
i∈Z
ci ψ

∨
1
s
(j/s− i) = s

rj∑
i=`j

ci ψ
∨(j − is), with

`j =
⌈
j/s−W/(2s)

⌉
and rj =

⌊
j/s+W/(2s)

⌋
.

(8.4)

This is the intuitive algorithm implemented by the downsample function in
appendix A, lines 218–247 (again except for the dual grid structure).

Equations (8.3) and (8.4) allow direct random-access evaluation of any
sample (cs)j . While this freedom is useful in a variety of applications, it has
its costs. First, because the kernels are piecewise polynomial, evaluating them
at arbitrary offsets ϕ(j/s− i) or ψ∨(j − is) requires branching on the correct
polynomial piece for each loop iteration i. Second, the algorithms often read
each input sample multiple times. Instead, it is preferable to traverse the input
only once to reduce expensive memory accesses and indexing computations
near boundaries. When the task at hand is to magnify or minify an entire image
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Figure 8.1: Efficient piecewise-polynomial kernel evaluation. The cubic B-spline kernel defined
over the domain x ∈ (−2, 2] (top left) is divided into its 4 polynomial pieces, each defined
inside a unit domain u ∈ (0, 1] (top right). During magnification, we keep track of the value
of u associated to each output sample. During minification, we keep track of the value of u
associated to each input sample. That way we always know which polynomial piece to use.

(a common case), it is possible to eliminate these inefficiencies, leading to
performance improvements of 4–10×.

As an example, consider the top of figure 8.1. It shows the cubic B-
spline kernel, with support W = 4, divided into its 4 polynomial pieces,
k0, k1, k2, k3, each covering a unit interval. We set up the computation so that
we always know which piece to use, as shown in the bottom of figure 8.1.

In the case of magnification, consider b0, b1, b2, b3 as input samples stored
in a FIFO buffer. It is clear from figure 8.1 that to evaluate any output sample fu
situated at u along the way between b1 and b2, we can use the expression:

fu ← b0k3(u) + b1k2(u) + b2k1(u) + b3k0(u). (8.5)

By keeping these four samples in fast local variables, we can generate all output
samples in the interval by incrementally adding 1

s to u and evaluating the exact
same expression. When u > 1, we advance the input by shifting a new
sample into the FIFO buffer, subtract 1 from u, and repeat the process. This
incremental algorithm implemented within function upsample2 in lines 256–
274 of appendix A.

The incremental minification algorithm is very similar. The difference is
that now b0, b1, b2, b3 each represent an output sample accumulating weighted
input samples. From figure 8.1, the contribution of an input sample fu situ-
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ated u along the way between b1 and b2 is simply:

b0 ← b0 + fu k3(u), b1 ← b1 + fu k2(u), (8.6)

b2 ← b2 + fu k1(u), b3 ← b3 + fu k0(u). (8.7)

We can therefore iterate over the input, incrementally adding s to u and up-
dating the partial output samples in the buffer using the expressions above.
Whenever u > 1, we subtract 1 from u, advance the output by saving the
value s b0, shift a 0 into the FIFO buffer, and repeat the process. This incremen-
tal algorithm is implemented within function downsample2 in lines 276–303
of appendix A.

GPU reconstruction Texture samplers on GPUs often have custom hard-
ware to perform bilinear reconstruction at reduced cost. Moving to higher-
quality reconstruction may incur a performance penalty if these bilinear
samplers are underutilized. For instance, an implementation of the bicubic
Mitchell-Netravali filter requires 4×4=16 texture reads, versus 1 read for
bilinear filtering. As shown by Sigg and Hadwiger [2005], even though the
bicubic B-spline basis has the same 4×4 support, the fact that it is non-negative
and separable allows it to be evaluated by combining just 4 bilinear reads
at appropriately computed locations. Ruijters et al. [2008] also describe a
similar trick. Depending on the GPU, our implementation of this idea runs
3–6× slower than bilinear filtering, but about 2× faster than Catmull-Rom or
Mitchell-Netravali filters.

8.3 Prefiltering, reconstruction, and color spaces

In reconstruction, the average between two function values should be perceived
to have the intermediate value between them. Luminance values do not have
this property due to a nonlinear response in the human visual system. This
nonlinear perceptual response to luminance is called lightness. The gamma
correction in the sRGB standard approximates the conversion of luminance to
lightness. Therefore, when processing visual data we recommend performing
reconstruction directly in sRGB space to achieve better perceptual results.

In stark contrast, prefiltering is an area integral of radiant energy. It must
be performed over linear intensities and only then can results be moved to a
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(a) (b) (c)

Figure 8.2: Prefiltering, reconstruction, and color spaces. (a) A large image with two ramps
(one continuous and one dithered) was downsampled by prefiltering linear intensities (top
ramps). Downsampled ramps look the same. When prefiltering is performed in lightness space,
the results do not match (bottom ramps). (b) An image upsampled with quintic B-spline
interpolation in lightness space. (c) The same image upsampled in linear intensities appears
incorrect.

perceptual color space [Blinn, 1998]. As figure 8.2 demonstrates, prefiltering
is best done in luminance space and reconstruction is best done in lightness
space.

8.4 Range constraints

An important consideration is that the digital filter q may extend the range
of values in an image. For example, a signal f with range bounded to [0, 1]
may require a coefficient vector c with values outside this range, especially
if f has high-frequency content. While this larger range is likely acceptable
for floating-point or HDR image representations, it is a concern for common
8-bit fixed-point formats.

To find an approximation for interpolation coefficients c within an 8-bit
image format, we set its quantized range to a somewhat larger interval [`, h],
and solve the constrained optimization:

c̄ = arg min
c

∥∥c ∗ JϕK−f∥∥2
, s.t. ` ≤ ck ≤ h. (8.8)

This is a least squares problem with simple bounds constraints. Efficient direct
solvers exist, e.g. the Matlab function lsqlin. Alternatively, we obtain good
approximations using just five iterations of Gauss-Seidel relaxation, wherein
the update of each pixel value is clamped to the bounds constraints.
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Experimenting on natural images, we find that, for bicubic B-splines, set-
ting the expanded range [`, h] = [−0.5, 1.5] gives good results with respect to
both an L2 and SSIM metric. One might expect that the sampled reconstruc-
tion Jf̃ K may only interpolate a given input f with 7 bits of precision, because
the quantized c values now span twice the range. Surprisingly, this is not the
case for natural images. With the bicubic B-spline basis, each pixel is recon-
structed by a weighted combination of 16 coefficients of c. This combination
effectively provides sub-quantum precision. Even with the simple constrained
optimization (8.8), which is unaware of the subsequent quantization process,
a reconstruction of the original image of figure 10.5 from an 8-bit-quantized
vector c has an rms error of 0.07% and a maximum error of 12%, with about
93% of pixel values reproduced exactly. Intuitively, the bicubic B-spline gives
more precision to low frequencies.

As future work one could explore a combinatorial optimization to let
the 8-bit-quantized c values approximate an image with more than 8 bits of
precision. Such super-precision may be possible only in low-frequency regions,
but these smooth regions are precisely where precision is most perceptible.
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Theoretical considerations

In this section, we delve deeper into theoretical considerations on the ap-
proximation order of a complete sampling pipeline. Recall that we obtain an
approximation f̃T to a signal f as follows:

f̃T =
q
f ∗ (q∨∗ ψ)∨T

y
T
∗T ϕT =

q
f ∗ ψ∨T

y
T
∗T (q ∗ ϕ)T . (9.1)

Any given choice of generating function ϕ defines the shift-invariant
space Vϕ,T of representable approximations:

Vϕ,T = {f̃T : R → R | f̃T = cT ∗T ϕT , ∀cT ∈ l2}. (9.2)

The roles of the digital filter q and the analysis filter ψ are to select a particular
approximation f̃T in this space, i.e., they select the coefficient vector cT .

We say that space Vϕ,T has approximation order L when we can find a
constant C > 0 such that the following relation holds:

‖f − Pϕ,T f‖L2 = C TL ‖f (L)‖L2 as T → 0. (9.3)

In other words, the norm of the residual between f and its orthogonal projec-
tion Pϕ,T f into Vϕ,T falls to zero with order L when we progressively reduce
sample spacing T .

We will see the connection between the approximation order and the
ingredients ϕ, ψ, and q of the sampling pipeline.

53
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On admissible kernels In formal presentations, it is common to open
with admissibility restrictions on the generating function ϕ. That is, we must
ensure that Vϕ,T is a closed subspace of L2 before we can discuss approxi-
mation in this particular signal subspace. We require that the set of shifted
generating functions ϕ(·/T −k), k ∈ Z form a Riesz basis of Vϕ,T so that any
signal in Vϕ,T is uniquely determined by cT . This condition is equivalent to the
orthogonal projection being well-defined, which in turn is equivalent to the re-
quirement that convolution with the sampled auto-correlation JaϕK = Jϕ ∗ϕ∨K
of ϕ must be a bounded invertible operator from l2 into itself. Interestingly,
if p is an invertible convolution operator then Vp∗ϕ = Vϕ and therefore p∗ϕ
and ϕ are equivalent generating functions. The important observation is that
these safeguards are satisfied by most generating functions used in practice [Al-
droubi and Unser, 1994]. A key exception is that derivatives of admissible
kernels are not themselves admissible.

On approximation order The Strang-Fix conditions [Strang and Fix,
1973] state that a space Vϕ has approximation order L if and only if all
polynomials of degree up to L − 1 belong to Vϕ. Any projection operator
finds the unique representation of the polynomials in Vϕ. In particular, the
orthogonal projection of section 4.3. The Strang-Fix conditions are therefore
equivalent to:

Pϕ (·)n = J(·)n ∗ ϕ̊∨K ∗ ϕ = (·)n, n ∈ {0, . . . , L−1}. (9.4)

More generally, the oblique projection of section 4.4 also finds the representa-
tion of polynomials of degree up to L− 1 in Vϕ if they exist, so long as the
analysis filter ψ is such that Jaϕ,ψK is invertible:

Pϕ⊥ψ (·)n = J(·)n∗ ψ∨K∗Jaϕ,ψK-1∗ ϕ = (·)n, n ∈ {0, . . . , L−1}. (9.5)

A simpler formulation comes from the interpolation strategy of section 4.1. It
is the projection operator that results from setting ψ = δ above:

J(·)nK ∗ ϕint = J(·)nK ∗ JϕK-1∗ ϕ = (·)n, n ∈ {0, . . . , L−1}. (9.6)

The conditions on approximation order describe the asymptotic behavior
of the orthogonal projection. Other choices of analysis filter and digital filter
necessarily lead to poorer approximations with respect to the L2 norm, but
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may attain the same approximation order L as the orthogonal projection. This
is the case if the approximation scheme reproduces all polynomials of degree
up to L− 1 exactly [de Boor, 1989].

Any projection into a space Vϕ of order L satisfies this property. These
include interpolation, orthogonal projection, and oblique projection. Enforcing
the projection property is equivalent to requiring the combination of analysis
filter ψ and digital filter q to be biorthogonal to ϕ:

Jϕ ∗ (q∨∗ ψ∨)K = δ. (9.7)

Although sufficient, this is not a necessary condition. A projection exactly
reproduces all functions in Vϕ. This includes many other functions besides
the polynomials of degree up to L− 1 that we care about. The necessary and
sufficient condition is simply

J(·)n ∗ (q∨∗ ψ)∨K = J(·)n ∗ ϕ̊∨K, n ∈ {0, . . . , L−1}. (9.8)

This is in fact equivalent to requiring equality only at the sample placed at 0.
It is enough for the effective analysis filter to have same moments as the dual
up to order L− 1 [Blu and Unser, 1999b]:〈

(·)n, q∨∗ ψ〉 =
〈
(·)n, ϕ̊〉, n ∈ {0, . . . , L− 1}. (9.9)

This milder condition is called quasibiorthogonality of order L, and the result-
ing schemes are called quasiinterpolators of order L.

Frequency domain characterizations For many of the properties we
discussed in this section, the frequency domain characterizations bring valu-
able insight. For example, the admissibility criterion on Vϕ is equivalent to the
sampled auto-correlation aϕ = JaϕK of ϕ being a bounded, invertible discrete
convolution operator. In the frequency domain

b ∗ aϕ
F−→ b̂ âϕ and c ∗ (aϕ)-1 F−→ ĉ

âϕ
. (9.10)

Boundedness and invertibility of the operator are equivalent to the conditions

A ≤ âϕ ≤ B, for 0 < A ≤ B <∞, (9.11)

which are easier to verify in practice.
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In more theoretical texts, we often find the sampled auto-correlation func-
tion defined directly in the frequency domain. Recall

aϕ = JaϕK = Jϕ ∗ ϕ∨K = X · (ϕ ∗ ϕ∨). (9.12)

Taking the Fourier transform,

X̂ ∗
(
ϕ̂ · (̂ϕ∨)

)
= X ∗

(
ϕ̂ · (ϕ̂)∗

)
= X ∗ |ϕ̂|2 =

∑
k∈Z

∣∣ϕ̂(·+ k)
∣∣2, (9.13)

so that

âϕ =
∑
k∈Z

∣∣ϕ̂(·+ k)
∣∣2. (9.14)

An equivalent formulation for (9.6) is given in [Unser et al., 1995b]:

X ∗
(
(·)nϕint(·)) =

1 n = 0, (partition of unity)

0 n ∈ {1, . . . , L− 1}.
(9.15)

Now if we recall the Fourier transform rule for derivatives

(·)nf F−→ ( i
2π )n(f̂ )(n), (9.16)

we reach the frequency-domain formulation for (9.6):q
(̂ϕint)

(n)y
=

δ n = 0,
0 n ∈ {1, . . . , L− 1},

(9.17)

The form in (9.17) indicates that, as the approximation order increases, the
frequency response of the cardinal ϕint gets closer to the ideal low-pass filter.

The quasibiorthogonality conditions in (9.9) are also difficult to verify
as stated. Recall that both the effective analysis filter and the dual are likely
to have infinite support, so the resulting integrals are improper and involve
infinite summations. Fortunately, the expressions in frequency domain are
much simpler. If we recall that:

f̂(0) =
∫ ∞

-∞
f(t) dt, (9.18)

we see that the conditions in (9.9) are equivalent to

(q̂∨∗ ψ)(n)(0) = (̂̊ϕ)(n)(0), n ∈ {0, . . . , L− 1}. (9.19)

In other words, the Maclaurin series of the Fourier transforms of the effective
analysis filter and the dual must be the same up to order L−1. The formulation
in the frequency domain is again easier to verify or enforce.
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Experiments and analyses

We performed experiments on about 50 kernels described in the literature.
Here we present a subset of these results. More details are available in the
supplemental material.

Transient responses Figure 10.1 shows the impulse and ramp responses
for a variety of reconstruction kernels. The impulse responses for the B-spline
kernels show the generator ϕ as a dashed line, and the cardinal ϕ ∗ JϕK-1 as
a solid line. The presence of negative lobes in an impulse response is often
cited as a concern for possible ringing artifacts in reconstruction. However,
images with good signal-to-noise ratio and proper antialiasing rarely contain
impulses or even sharp step-discontinuities. Instead, we think that the ramp
response is more representative of content present in natural images, and it
predicts significantly reduced ringing for all kernels.

Continuous frequency response Another popular analysis tool for
prefiltering and reconstruction kernels is the frequency response. In traditional
sampling, this is simply the magnitude of the Fourier transform of ψ or ϕ. In
generalized sampling, we must account for the effect of the digital filter q by
multiplying-in its DTFT. Figure 10.2 shows the resulting responses for typical
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Figure 10.1: Transient responses. Any reconstruction kernel containing negative lobes results
in a certain amount of ringing (b–f). Mitchell and Netravali [1988] designed their kernel to
minimize such problems (d), as seen in the comparison with the impulse responses of other
kernels, in particular B-spline interpolation (b,c) and Lanczos (f). The ramp response, which is
more characteristic of properly antialiased images, predicts significantly reduced ringing across
all kernels.
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Figure 10.2: Frequency responses. (a–c) The frequency response of B-spline interpolation
converges towards that of the ideal low-pass filter as the degree increases. (b) (β3)int outper-
forms the popular cubic kernels (d) Mitchell and Netravali [1988] and (e) Keys [1981], and its
low-pass behavior is at least as good as the more expensive Lanczos kernel (f). Using the same
support, (β5)int in (c) performs significantly better.
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kernels used in computer graphics. For each filter, the top graph uses a linear
vertical scale and the bottom graph uses a log vertical scale (in decibels) to
more clearly reveal the attenuation of unwanted high frequencies. The “ideal”
frequency response corresponds to the dashed line depicted in each plot. The
progression towards ideal low-pass behavior for increasing approximation
order, as indicated by equation (9.17), is clearly confirmed in the plots.

Frequency response in resampling Figure 10.3 shows the effects of
a resampling strategy on the amplitude of each frequency in the discrete input
signal, as well as the phase errors introduced. The work of Parker et al. [1983]
served as an inspiration for this visualization. Recall from section 5.1 that naïve
translation by an offset h after reconstruction with r∗ϕ is equivalent to discrete
convolution with r ∗ Jτh∗ ϕK. Shaded areas represent the span of behaviors
of the discrete kernels associated to h ∈ [−0.5, 0.5]. Thus, the frequency
response can vary significantly as we vary the alignment between the input
and output sample grids. It is clear that generalized kernels result in better
amplitude preservation and lower phase errors. The lower phase errors may
be useful when extracting coordinates of matching features from resampled
images (e.g., in computer vision applications involving rectification). More
research is needed.

Response of complete pipeline The reconstruction response plots in
figures 10.2, though informative, show the response of only part of the pipeline.
In contrast, figure 10.4 shows a visualization of the effect of the entire pipeline,
for a variety of prefiltering and reconstruction strategies, including the effect
of the sampling operation between them. In each plot, the blue curve shows
what is left of the original f in the reconstructed f̃ . The purple curve includes
the effect of all aliases generated by the sampling procedure. The shaded
area between the curves therefore represents the amount of aliasing in the
reconstructed signal. We focus on reconstruction with the box kernel, which is
a reasonable approximation of typical LCD displays. One takeaway message
is that a sharper prefilter preserves more of the original signal. Nonetheless,
a softer prefilter may be preferable for reducing post-aliasing when a poor
reconstruction filter shows excessive artifacts. Another interesting observation
is that orthogonal projection with B-splines is very effective, except of course
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Figure 10.3: Frequency response and phase errors in resampling. The shaded regions indi-
cate the range of amplitude attenuation (or magnification) and phase errors introduced when
resampling a signal under all possible translation offsets. These results corroborate those of
figure 10.2. The cubic B-spline interpolation (b) performs better than other cubic kernels (d,e),
and the quintic B-spline (c) performs significantly better than Lanczos (f).
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Figure 10.4: Frequency response for the complete pipeline. In each plot, the blue curve
marks the combined effect of the prefilter and the reconstruction filter on a broad-spectrum
function f when no sampling is involved. The purple curve marks the effect of the entire
pipeline, including sampling operations. The shaded region between them therefore represents
aliasing. (a–g) reconstruct with the box filter, which is a good approximation for current LCD
displays. (a) is orthogonal projection in space Vβ0 . In (a–c), more content is preserved as
prefilters become sharper, from the box to the cardinal cubic B-spline. (d) shows how Mitchell
and Netravali [1988] softens results but also attenuates aliasing relative to (a–c). (e) shows the
effect of directly sending the coefficients of orthogonal projection in Vβ3 for reconstruction
with box, (f) shows the less objectionable idea of sampling the projection first, and (g) shows
the more principled oblique projection from the cubic B-spline space to the box space. Finally,
(h) shows the excellent performance of orthogonal projection in the cubic B-spline space. Note,
however, the aliasing concentrated around the Nyquist rate.

when reconstructing with a different basis, in which case oblique projection
is preferred. These experiments provide a glimpse of what is possible when
orthogonal projection is realized in a space with good approximation properties.
Example renderings for each of these pipelines are shown in the supplemental
material.

Effect of repeated resampling The importance of good approximation
properties in a sampling scheme is typically demonstrated using the cumulative
effect of repeated resampling operations. Figure 10.5 shows the result of
repeatedly translating or rotating an image 60 times. This challenging test may
seem a somewhat artificial experiment. However, lower degradation rates are
useful in real-time applications that amortize computations across subsequent
frames (e.g., using reprojection). Furthermore, the test helps reveal filtering
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Figure 10.5: Repeated resampling. A sharp image was rotated 60 times by 6◦(top) and trans-
lated 60 times around a 5-pixel radius circle (bottom). We see that the amount of detail preserved
is related to the approximation order. (a,b) The second-order hat and Mitchell-Netravali kernels
perform worst, followed by the third-order Catmull-Rom (c). (d) Lanczos reconstruction (L = 1
with normalization, W = 6) causes certain frequencies to explode (see figures 10.2f and 10.3f).
(e) The optimal-order cardinal cubic B-spline (L = 4) performs significantly better, but is
surpassed by the remarkable cardinal cubic O-MOMS (f), which has the same approximation
order but a smaller approximation constant.
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Figure 10.6: Effect of repeated translations on PSNR. The top performing methods all include
a digital filter q. We note the excellent behavior of interpolation with the cubic O-MOMS
kernel (W = 4), and of approximation by the quadratic scheme of Condat et al. [2005]
(W = 3). The Lanczos window is outperformed by the Hamming window (W = 6), and
both are outperformed by the more efficient, high-approximation-order generalized kernels.
Traditional linear interpolation, Mitchell and Netravali [1988], and Keys [1981] lag far behind.

weaknesses that may not be visible in a single processing step but become
apparent as part of a larger pipeline. Also, any blurring or contrast reduction is
greatly accentuated and thus easier to visualize. It is remarkable how well the
generalized methods perform relative to traditional approaches. The results
also show the advantage of dropping the regularity constraint in favor of a
lower approximation coefficient (see O-MOMS vs. B-spline).

Quantitative experiments In additional to providing results for visual
inspection, we also present quantitative comparisons using both the traditional
L2 metric and the mean structural similarity (MSSIM) metric of Wang et al.
[2004]. MSSIM is closer to the perceptual characteristics of the human visual
system. Figure 10.6 shows a plot of the accumulated degradation, in terms of
PSNR, as operations are repeated with a range of resampling strategies. Larger
values of PSNR are ideal, and of course some loss in signal is inevitable due
to the resampling operations. The MSSIM results are also summarized in
table 10.1. Again, the generalized resampling strategies stand out for their
improved reconstruction quality (for a given support size).
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Table 10.1: Quantitative analysis of reconstruction quality. Kernel properties are degree N ,
width W , and approximation order L. The main columns report the mean structural similarity
(MSSIM) between reference images (concentric circles as in figure 8.2, and average of four Ko-
dak benchmarks) and their reconstructions for three types of experiments (repeated translations
or rotations, and single upsampling). The kernels are sorted in descending order of average
quality across all experiments. The interpolating B-splines bspline*i consistently outperform
the more traditional filters for the same N and W . The O-MOMS kernels omoms* offer even
slightly higher quality but at the expense of differentiability. The quasi-interpolant condat2,
which has degree 2 and support 3, also performs remarkably well.

Comparisons against ground truth (MSSIM)

Properties Translations Rotations Upscaling Average

Kernel N W L CIR Kodak CIR Kodak CIR AVG

omoms5 5 6 6 0.993 0.965 0.999 0.983 0.886 0.979
bspline5i 5 6 6 0.990 0.956 0.998 0.980 0.886 0.973
omoms3 3 4 4 0.981 0.940 0.997 0.977 0.886 0.964
quasiblu35 3 4 4 0.965 0.919 0.994 0.973 0.885 0.946
condat3 3 4 4 0.962 0.915 0.991 0.969 0.885 0.943
hamming6 – 6 1 0.960 0.912 0.977 0.956 0.885 0.941
bspline3i 3 4 4 0.948 0.900 0.977 0.957 0.885 0.935
condat2 2 3 3 0.930 0.884 0.989 0.966 0.884 0.927
lanczos6 – 6 1 0.964 0.828 0.987 0.960 0.884 0.910
bspline2i 2 3 3 0.901 0.860 0.955 0.942 0.884 0.906
omoms2 2 3 3 0.814 0.802 0.961 0.945 0.885 0.876
schaum2∗ 2 3 3 0.822 0.804 0.921 0.921 0.877 0.864
lanczos4 – 4 1 0.822 0.804 0.896 0.911 0.882 0.857
keys† 3 4 3 0.822 0.804 0.894 0.909 0.882 0.857
schaum3‡ 3 4 4 0.822 0.804 0.876 0.902 0.883 0.852
dalai1 1 2 2 0.657 0.716 0.956 0.941 0.865 0.828
linrev 1 2 2 0.686 0.716 0.960 0.928 0.864 0.822
condat1 1 2 2 0.651 0.713 0.947 0.936 0.866 0.824
hamming4 – 4 1 0.663 0.718 0.822 0.878 0.879 0.787
mitchell 3 4 2 0.581 0.680 0.625 0.806 0.881 0.715
linear 1 2 2 0.391 0.600 0.540 0.779 0.864 0.644
nearest 0 1 1 0.042 0.279 0.547 0.717 0.586 0.457

∗Same as IMOMS-2. †Same as Catmull-Rom. ‡Same as IMOMS-3. The kernels omoms* are
from [Blu et al., 2001]; quasiblu35 is from [Blu and Unser, 1999a]; bspline*i are the
cardinal B-splines βint; schaum* are from [Schaum, 1993]; linrev is from [Blu et al., 2004];
condat* are from [Condat et al., 2005]; dalai1 is from [Dalai et al., 2006].



66 Experiments and analyses

Discrete downscaling Figure 10.7 shows a challenging example for dis-
crete image downscaling using equation (5.28) (i.e., with no reconstruction).
At the selected output resolution, the image is extremely prone to aliasing,
which is clearly visible even with the soft Mitchell-Netravali kernel. In contrast,
the cardinal cubic B-spline and O-MOMS kernels virtually eliminate aliasing,
while maintaining sharpness indistinguishable from the wider Lanczos kernel.

Animation tests In animation sequences, the effect of the resampling
frequency response of section 10 is often visible. Phase errors cause high
frequencies to oscillate in position, whereas amplitude errors cause high
frequencies to oscillate in brightness. To demonstrate these effects, we use
simple animation sequences in which each frame is the result of translating
an input image around a circle with a 5 pixel radius, according to the naïve
scheme of section 5.1. These results are also available in the supplemental
material.
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(a) Original (b) Nearest (c) β0 (d) M

(e) K (f) Lanczos (W = 6) (g) β3
int (h) O3

int

Figure 10.7: Image downscaling using generalized sampling as in equation (5.28), using
impulse reconstruction (i.e., r ∗ ϕ = δ), for various prefilters p ∗ ψ. The image shown in (a)
was downscaled from its original (500×700) to an alias-prone resolution (65×91). It was
then upscaled back to the original size using nearest neighbors to minimize any reproduction
artifacts. (b,c) Note that nearest and box filtering result in a substantial amount of aliasing.
(d,e) Mitchell-Netravali and Catmull-Rom (Keys) alleviate the problem, but aliasing is still
clearly visible. (f) A wider support allows the Lanczos windowed-sinc to virtually eliminate
aliasing while preserving image sharpness. (g,h) However, similar results are obtained with the
cardinal cubic B-spline and O-MOMS filters, which have smaller support but include a fast
digital filtering stage.
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Conclusions

The framework of generalized sampling offers practical improvements in sev-
eral areas of graphics. Our analysis and experiments confirm that it enables
significantly higher quality in upsampling and resampling operations. We
have adapted its concepts to derive a variety of supersampling techniques, and
shown that these offer comparable quality to the best conventional techniques,
but at a reduced computational cost. Similarly, we have explored a new fam-
ily of image downscaling techniques, some of which outperform traditional
algorithms in terms of blurring, ringing, and aliasing. Although generalized
sampling does require solving discrete inverse filters, this computation is effi-
cient and scales well to multicore and GPU architectures. Pedagogically, one
of our contributions is a new parameterless notation that moves easily between
discrete and continuous functions. By avoiding tedious index manipulations,
this algebraic notations lets us to reason more intuitively about otherwise com-
plex operations. We hope that these contributions may aid the dissemination
of generalized sampling methods and attract broader interest from graphics
researchers.
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Appendices



A
Source-code

The C++11 sample code in this appendix demonstrates the following set of
functionalities:

Fast inverse discrete convolution in lines 12–32.
Safe indexing with reflection at boundaries in lines 34–38.
Box kernel in lines 66–77.
Hat kernel in lines 79–92.
Mitchell-Netravali kernel in lines 113–133.
Catmull-Rom kernel in lines 136–147.
Cardinal Cubic B-spline, a generalized kernel, in lines 157–168.
Cardinal Cubic O-MOMS, a generalized kernel, in lines 186–196.
Simple, intuitive upsampling in lines 198–216.
Simple, intuitive downsampling in lines 218–247.
Fast, incremental upsampling in lines 256–274.
Fast, incremental downsampling in lines 276–303.
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1 #include <iostream> // std::ostream, std::cout
2 #include <cmath> // std::abs(), std::ceil(), std::floor()
3 #include <algorithm> // std::min()
4 #include <vector> // std::vector<>
5 #include <array> // std::array<>
6 #include <string> // std::string
7 #include <cassert> // assert()
8 #include <chrono> // std::chrono for timing benchmarks
9 using namespace std;

10

11 // Apply to sequence f the inverse discrete convolution given by
12 // a pre-factored LU decomposition
13 template<size_t M>
14 void linear_solve(const array<float,M>& L, vector<float>& f) {
15 const int m = M, n = int(f.size());
16 const float p_inv = 1.f; // Optimized for prescaled kernel where p = 1
17 // Pre-factored decomposition only works when n>m. Grow sequence f if needed.
18 while (f.size() <= m) {
19 f.reserve(2*f.size()); // Prevent reallocation during insertions
20 f.insert(f.end(), f.rbegin(), f.rend()); // Append a reflection
21 }
22 int nn = int(f.size()); // New size
23 const float L_inf = L[m-1], v_inv = L_inf/(1.f+L_inf);
24 // Forward pass: solve Lc′ = f in-place
25 for (int i=1; i<m; i++) f[i] -= L[i-1]*f[i-1];
26 for (int i=m; i<nn; i++) f[i] -= L_inf *f[i-1];
27 // Reverse pass: solve Uc = c′ in-place
28 f[nn-1] *= p_inv*v_inv;
29 for (int i=nn-2; i>=m-1; i--) f[i] = L_inf*(p_inv*f[i]-f[i+1]);
30 for (int i=m-2; i>=0; i--) f[i] = L[i] *(p_inv*f[i]-f[i+1]);
31 f.resize(n); // Truncate back to original size if grown
32 }
33

34 // Given sequence f, access f[i] using reflection at boundaries
35 static inline float get(const vector<float>& f, int i) {
36 return i<0? get(f,-i-1): i>=int(f.size())?
37 get(f,2*int(f.size())-i-1): f[i];
38 }
39

40 // Kernel interface
41 template<size_t N>
42 class KernelBase {
43 public:
44 KernelBase() { b.fill(0.f); }
45 // Evaluate kernel at coordinate x
46 virtual float operator()(float x) const = 0;
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47 // Apply the kernel’s associated digital filter to sequence f
48 virtual void digital_filter(vector<float>& f) const = 0;
49 // Kernel support (-support/2, support/2]
50 int support() const { return N; }
51 // Shift the incremental buffer
52 float shift_buffer(float a) {
53 rotate(b.begin(), b.begin()+1, b.end());
54 swap(b.back(), a);
55 return a;
56 }
57 // Incrementally accumulate a sample into buffer
58 virtual void accumulate_buffer(float fu, float u) = 0;
59 // Incrementally reconstruct the function from samples in buffer
60 virtual float sample_buffer(float u) const = 0;
61 virtual string name() const = 0;
62 // How much does the kernel integrate to?
63 virtual float integral() const { return 1.f; }
64 protected:
65 array<float,N> b; // Incremental buffer
66 };
67

68 // Simple box kernel
69 struct Box final: KernelBase<1> {
70 float operator()(float x) const override {
71 return x<=-0.5f || x>0.5f ? 0.f : 1.f;
72 }
73 void accumulate_buffer(float fu, float) override {
74 b[0] += fu;
75 }
76 float sample_buffer(float) const override { return b[0]; }
77 void digital_filter(vector<float>&) const override { }
78 string name() const override { return "Box"; }
79 };
80

81 // Simple hat kernel
82 struct Hat final: KernelBase<2> {
83 float operator()(float x) const override {
84 x = abs(x); return x>1.f ? 0.f : 1.f-x;
85 }
86 void accumulate_buffer(float fu, float u) override {
87 b[0] += fu*(1.f-u); b[1] += fu*u;
88 }
89 float sample_buffer(float u) const override {
90 return b[0]*(1.f-u)+b[1]*u;
91 }
92 void digital_filter(vector<float>&) const override { }
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93 string name() const override { return "Hat"; }
94 };
95

96 // Most cubics are C1-continuous, symmetric, and have support 4.
97 // Factor out common functionality into a class.
98 template<typename Pieces>
99 class Symmetric4Pieces: public KernelBase<4> {

100 public:
101 float operator()(float x) const override final {
102 x=abs(x); return x>2.f ? 0.f : x>1.f ? p.k0(2.f-x) : p.k1(1.f-x);
103 }
104 void accumulate_buffer(float fu, float u) override final {
105 b[0] += fu*p.k3(u); b[1] += fu*p.k2(u);
106 b[2] += fu*p.k1(u); b[3] += fu*p.k0(u);
107 }
108 float sample_buffer(float u) const override final {
109 return b[0]*p.k3(u)+b[1]*p.k2(u)+b[2]*p.k1(u)+b[3]*p.k0(u);
110 }
111 private:
112 Pieces p; // Polynomial pieces of kernel (k0:[-2,-1], k1:[-1,0], k2:[0,1], k3:[1,2]
113 };
114

115 // Traditional Mitchell-Netravali kernel
116 struct MitchellNetravaliPieces {
117 static float k0(float u) {
118 return (((7/18.f)*u-1/3.f)*u)*u;
119 }
120 static float k1(float u) {
121 return (((-7/6.f)*u+1.5f)*u+.5f)*u+1/18.f;
122 }
123 static float k2(float u) {
124 return (((7/6.f)*u-2.f)*u)*u+8/9.f;
125 }
126 static float k3(float u) {
127 return (((-7/18.f)*u+5/6.f)*u-.5f)*u+1/18.f;
128 }
129 };
130

131 struct MitchellNetravali final:
132 Symmetric4Pieces<MitchellNetravaliPieces> {
133 void digital_filter(vector<float>&) const override { }
134 string name() const override { return "Mitchell-Netravali"; }
135 };
136

137

138 // Traditional Catmull-Rom kernel



75

139 struct CatmullRomPieces {
140 static float k0(float u) { return ((.5f*u-.5f)*u)*u; }
141 static float k1(float u) { return ((-1.5f*u+2.f)*u+.5f)*u; }
142 static float k2(float u) { return ((1.5f*u-2.5f)*u)*u+1.f; }
143 static float k3(float u) { return ((-.5*u+1.f)*u-.5f)*u; }
144 };
145

146 struct CatmullRom final: Symmetric4Pieces<CatmullRomPieces> {
147 void digital_filter(vector<float>&) const override { }
148 string name() const override { return "Catmull-Rom"; }
149 };
150

151 // Cubic B-spline kernel pieces (multiplied by 6)
152 struct Bspline3Pieces {
153 static float k0(float u) { return ((u)*u)*u; }
154 static float k1(float u) { return ((-3.f*u+3.f)*u+3.f)*u+1.f; }
155 static float k2(float u) { return ((3.f*u-6.f)*u)*u+4.f; }
156 static float k3(float u) { return ((-u+3.f)*u-3.f)*u+1.f; }
157 };
158

159 // Generalized Cardinal Cubic B-spline kernel
160 struct CardinalBspline3 final: Symmetric4Pieces<Bspline3Pieces> {
161 void digital_filter(vector<float>& f) const override {
162 // Pre-factored L U decomposition of digital filter
163 const array<float,8> L{.2f, .26315789f, .26760563f,
164 .26792453f, .26794742f, .26794907f, .26794918f, .26794919f};
165 linear_solve(L, f);
166 }
167 string name() const override {
168 return "Cardinal Cubic B-spline";
169 }
170 float integral() const override { return 6.f; }
171 };
172

173 // Cubic OMOMS kernel pieces (multiplied by 5.25)
174 struct OMOMS3Pieces {
175 static float k0(float u) {
176 return ((.875f*u)*u+.125f)*u;
177 }
178 static float k1(float u) {
179 return ((-2.625f*u+2.625f)*u+2.25f)*u+1.f;
180 }
181 static float k2(float u) {
182 return ((2.625f*u-5.25f)*u+.375f)*u+3.25f;
183 }
184 static float k3(float u) {
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185 return ((-.875f*u+2.625f)*u-2.75f)*u+1.f;
186 }
187 };
188

189 // Generalized Cardinal Cubic O-MOMS3 kernel
190 struct CardinalOMOMS3 final: Symmetric4Pieces<OMOMS3Pieces> {
191 void digital_filter(vector<float>& f) const override {
192 // Pre-factored L U decomposition of digital filter
193 const array<float,9> L{.23529412f, .33170732f, .34266611f,
194 .34395774f, .34411062f, .34412872f, .34413087f, .34413112f,
195 .34413115f};
196 linear_solve(L, f);
197 }
198 string name() const override { return "Cardinal Cubic OMOMS"; }
199 float integral() const override { return 5.25f; }
200 };
201

202 // Simple, intuitive implementation of upsampling
203 template<typename Kernel> static vector<float>
204 upsample(vector<float> f, int m, Kernel& k) {
205 assert(m >= int(f.size())); // Ensure we are upsampling
206 vector<float> g(m); // New sequence of desired size m>f.size()
207 k.digital_filter(f); // Apply kernel’s associated digital filter
208 const float kr = .5f*float(k.support());
209 for (int j=0; j<m; j++) { // Index of sample in g
210 float x = (j+.5f)/m; // Position in domain [0,1] of both f and g
211 float xi = x*f.size()-.5f; // Position in input sequence f
212 int il = int(ceil(xi-kr)); // Leftmost sample under kernel support
213 int ir = int(floor(xi+kr)); // Rightmost sample under kernel support
214 double sum = 0.;
215 for (int i=il; i<=ir; i++)
216 sum += get(f,i)*k(xi-i);
217 g[j] = float(sum);
218 }
219 return g;
220 }
221

222 // Simple, intuitive implementation of downsampling
223 template<typename Kernel> static vector<float>
224 downsample(const vector<float>& f, int m, Kernel& k) {
225 assert(m <= int(f.size())); // Ensure we are downsampling
226 float s = float(m)/f.size(); // Scale factor
227 const int n = int(f.size());
228 const float kr = .5f*float(k.support());
229 const bool should_normalize = (f.size()%m != 0);
230 vector<float> g(m); // New sequence of desired size m<f.size()



77

231 for (int j=0; j<m; j++) { // Index of sample in g
232 float x = (j+.5f)/m; // Position in domain [0,1] of both f and g
233 int il = int(ceil ((x-kr/m)*n-.5f)); // Leftmost sample under kernel
234 int ir = int(floor((x+kr/m)*n-.5f)); // Rightmost sample under kernel
235 if (should_normalize) { // Should normalize?
236 double sum = 0., sumw = 0.; // Sums of values and weights
237 for (int i=il; i<=ir; i++) { // Loop over input samples
238 float w = k((x-(i+.5f)/n)*m); // Weight for sample
239 sum += w*get(f,i); sumw += w; // Accumulate values and weights
240 }
241 g[j] = k.integral()*float(sum/sumw); // Normalize by summed weights
242 } else {
243 for (int i=il; i<=ir; i++) {
244 g[j] += k((x-(i+.5f)/n)*m)*get(f,i);
245 }
246 g[j] *= s;
247 }
248 }
249 k.digital_filter(g); // Apply kernel’s associated digital filter
250 return g;
251 }
252

253 // Advance to next sample
254 inline bool advance(int& i, int& j, double& u, double inv_s) {
255 ++i; u += inv_s;
256 if (u < 1.) return false;
257 u -= 1.; ++j; return true;
258 }
259

260 // Faster, incremental implementation of upsampling
261 template<typename Kernel> vector<float>
262 upsample2(vector<float> f, int m, Kernel& k) {
263 k.digital_filter(f);
264 double inv_s = double(f.size())/m; // Inverse scale factor
265 // Output sample position between input samples
266 double u = .5*(inv_s+(k.support()+1)%2);
267 int fi = -k.support()/2-1;
268 assert(f.size() <= m); // Ensure we are upsampling
269 vector<float> g(m); // New sequence of desired size m>f.size()
270 for (int i=0; i<k.support(); i++) // Initialize incremental buffer
271 k.shift_buffer(get(f, ++fi));
272 for (int gi=0; gi<m; ) { // Sample reconstruction of f into g[gi]
273 g[gi] = k.sample_buffer(u);
274 if (advance(gi, fi, u, inv_s))
275 k.shift_buffer(get(f,fi));
276 }
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277 return g;
278 }
279

280 // Faster, incremental implementation of downsampling
281 template<typename Kernel> vector<float>
282 downsample2(const vector<float>& f, int m, Kernel& k) {
283 const int n = f.size();
284 double s = double(m)/n; // Scale factor
285 double kr = .5*k.support();
286 int fi = int(ceil(((.5-kr)/m)*n-.5));
287 // Input sample position between output samples
288 double u = ((fi+.5)/n)*m -(.5-kr);
289 assert(f.size() >= m); // Ensure we are downsampling
290 vector<float> g(m); // New sequence of desired size m>f.size()
291 int gi = -k.support();
292 for (int i=0; i < k.support(); i++) // Initialize incremental buffer
293 k.shift_buffer(0.f);
294 while (gi < -1) {
295 k.accumulate_buffer(get(f, fi), u);
296 if (advance(fi, gi, u, s)) k.shift_buffer(0.f);
297 }
298 while (1) { // Accumulate weighted f samples into g
299 k.accumulate_buffer(get(f, fi), u);
300 if (advance(fi, gi, u, s)) {
301 if (gi >= m) break;
302 g[gi] = s*k.shift_buffer(0.f);
303 }
304 }
305 k.digital_filter(g);
306 return g;
307 }
308

309 // Output a sequence
310 static ostream& operator<<(ostream& out, const vector<float>& f) {
311 for (int i=0; i<f.size(); i++)
312 out << (i+.5)/f.size() << ’\t’ << f[i] << ’\n’;
313 return out;
314 }
315

316 // Report elapsed lifetime of object
317 class Timing {
318 public:
319 Timing(const string& name) : m_name(name), m_start(now()) { }
320 ~Timing() {
321 using namespace std::chrono;
322 double t = duration_cast<microseconds>(now()-m_start).count();
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323 cout << m_name << " in " << t/1000. << " ms\n";
324 }
325 private:
326 using clock = chrono::high_resolution_clock;
327 using time_point = chrono::time_point<clock>;
328 static time_point now() { return clock::now(); }
329 string m_name;
330 time_point m_start;
331 };
332

333 static double
334 maxerr(const vector<float>& f, const vector<float>& g) {
335 double m = 0.;
336 assert(f.size() == g.size());
337 for (size_t i=0; i<f.size(); i++) {
338 m = max(m, abs(double(g[i])-f[i]));
339 }
340 return m;
341 }
342

343 template<typename Kernel>
344 void test_performance(int up, int down) {
345 Kernel k;
346 vector<float> f{0.f, 3.f, 1.f, .5f, 4.f, 2.f}, g(f);
347 { Timing t(k.name()+" up"); f = upsample(f, up, k); }
348 { Timing t(k.name()+" up2"); g = upsample2(g, up, k); }
349 cout << " " << maxerr(f, g) << " max error\n";
350 { Timing t(k.name()+" down"); f = downsample(f, down, k); }
351 { Timing t(k.name()+" down2"); g = downsample2(g, down, k); }
352 cout << " " << maxerr(f, g) << " max error\n";
353 }
354

355 // Plot kernel impulse response. Pipe through gnuplot -persist
356 template <typename Kernel>
357 static void
358 gnuplot(const vector<float>& f, int window, Kernel& k, int w) {
359 cout << "set terminal aqua " << window << ’\n’; // Change to your needs
360 cout << "set title \"" << k.name() << "\"\n";
361 cout << "set xrange [" << -.5f*w << ":" << .5f*w << "]\n";
362 cout << "plot \"-\" u (" << w << "*($1-0.5)):2 w l t \"\"\n";
363 cout << f << "e\n";
364 }
365

366 template <typename Kernel>
367 void plot(int up, int down, int& window) {
368 Kernel k;
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369 // Trick to see impulse response
370 vector<float> f{0.f, 0.f, 0.f, 0.f, 1.f, .0f, 0.f, 0.f, 0.f};
371 const int w = f.size();
372 f = upsample(f, up, k);
373 gnuplot(f, window++, k, w);
374 f = downsample(f, down, k);
375 gnuplot(f, window++, k, w);
376 }
377

378 template<typename Kernel>
379 static void check_interpolation() {
380 Kernel k;
381 cout << "checking " << k.name() << ’\n’;
382 vector<float> f{.5f, 2.f, 1.f, 0.f, 5.f};
383 vector<float> g = upsample(f, f.size(), k);
384 cout << " " << maxerr(f, g) << " max error\n";
385 g = downsample(f, f.size(), k);
386 cout << " " << maxerr(f, g) << " max error\n";
387 }
388

389 int main() {
390 if (1) {
391 const int up = 1000001, down = 101;
392 test_performance<Box>(up, down);
393 test_performance<Hat>(up, down);
394 test_performance<CatmullRom>(up, down);
395 test_performance<MitchellNetravali>(up, down);
396 test_performance<CardinalBspline3>(up, down);
397 test_performance<CardinalOMOMS3>(up, down);
398 } else if (0) {
399 const int up = 1001, down = 51;
400 int window = 1;
401 plot<Box>(up, down, window);
402 plot<Hat>(up, down, window);
403 plot<CatmullRom>(up, down, window);
404 plot<MitchellNetravali>(up, down, window);
405 plot<CardinalBspline3>(up, down, window);
406 plot<CardinalOMOMS3>(up, down, window);
407 } else {
408 check_interpolation<Box>();
409 check_interpolation<Hat>();
410 check_interpolation<CatmullRom>();
411 check_interpolation<CardinalBspline3>();
412 check_interpolation<CardinalOMOMS3>();
413 }
414 }



Bibliography

A. Aldroubi and M. Unser. Sampling procedures in function spaces and asymptotic
equivalence with Shannon’s sampling theory. Numerical Functional Analysis and
Optimization, 15(1–2):1–21, 1994.

U. Alim, T. Möller, and L. Condat. Gradient estimation revitalized. IEEE Transactions
on Visualization and Computer Graphics, 16(6):1495–1504, 2010.

J. F. Blinn. Return of the jaggy. IEEE Computer Graphics and Applications, 9(2):
82–89, 1989.

J. F. Blinn. A ghost in a snowstorm. IEEE Computer Graphics and Applications, 18
(1):79–84, 1998.

T. Blu and M. Unser. Quantitative Fourier analysis of approximation techniques: Part
I—Interpolators and projectors. IEEE Transactions on Signal Processing, 47(10):
2783–2795, 1999a.

T. Blu and M. Unser. Approximation error for quasi-interpolators and (multi-)wavelet
expansions. Applied and Computational Harmonic Analysis, 6(2):219–251, 1999b.

T. Blu, P. Thénavaz, and M. Unser. Generalized interpolation: Higher quality at no
additional cost. In Proceedings of the IEEE International Conference on Image
Processing, volume 3, pages 667–671, 1999.

T. Blu, P. Thévenaz, and M. Unser. MOMS: Maximal-order interpolation of minimal
support. IEEE Transactions on Image Processing, 10(7):1069–1080, 2001.

T. Blu, P. Thévenaz, and M. Unser. Linear interpolation revitalized. IEEE Transactions
on Image Processing, 13(5):710–719, 2004.

E. Catmull and R. Rom. A class of local interpolating splines. In Computer Aided
Geometric Design, pages 317–326, 1974.

81



82 Bibliography

L. Condat and T. Möller. Quantitative error analysis for the reconstruction of deriva-
tives. IEEE Transactions on Image Processing, 59(6):2965–2969, 2011.

L. Condat, T. Blu, and M. Unser. Beyond interpolation: optimal reconstruction by
quasi-interpolation. In Proceedings of the IEEE International Conference on Image
Processing, volume 1, pages 33–36, 2005.

Franklin Crow. Summed-area tables for texture mapping. Computer Graphics
(Proceedings of ACM SIGGRAPH 84), 18(3):207–212, 1984.

M. Dalai, R. Leonardi, and P. Migliorati. Efficient digital pre-filtering for least-squares
linear approximation. In Visual Content Processing and Representation, volume
3893 of Lecture Notes in Computer Science, pages 161–169. 2006.

C. de Boor. Quasiinterpolants and the approximation power of multivariate splines.
Technical Report #99-12, University of Wisconsin-Madison, 1989.

M. A. Z. Dippé and E. H. Wold. Antialiasing through stochastic sampling. Computer
Graphics (Proceedings of ACM SIGGRAPH 1985), 19(3):69–78, 1985.

N. A. Dodgson. Quadratic interpolation for image resampling. IEEE Transactions on
Image Processing, 6(9):1322–1326, 1997.

C. E. Duchon. Lanczos filtering in one and two dimensions. Journal of Applied
Meteorology, 18(8):1016–1022, 1979.

I. German. Short kernel fifth-order interpolation. IEEE Transactions on Signal
Processing, 45(5):1355–1359, 1997.

R. W. Hamming. Digital Filters. Prentice Hall, 1977.

P. S. Heckbert. Filtering by repeated integration. Computer Graphics (Proceedings of
ACM SIGGRAPH 1986), 20(4):315–321, 1986.

H. S. Hou and H. C. Andrews. Cubic splines for image interpolation and digital
filtering. IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(6):
508–517, 1978.

R. Hummel. Sampling for spline reconstruction. SIAM Journal on Applied Mathe-
matics, 43(2):278–288, 1983.

J. Kajiya and M. Ullner. Filtering high quality text for display on raster scan devices.
Computer Graphics (Proceedings of ACM SIGGRAPH 1981), 15(3):7–15, 1981.

R. G. Keys. Cubic convolution interpolation for digital image processing. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 29(6):1153–1160, 1981.

C. Lee, M. Eden, and M. Unser. High-quality image resizing using oblique projection
operators. IEEE Transactions on Image Processing, 7(5):679–692, 1998.

M. A. Malcolm and J. Palmer. A fast method for solving a class of tridiagonal linear
systems. Communications of the ACM, 17(1):14–17, 1974.



Bibliography 83

M. D. McCool. Analytic antialiasing with prism splines. In Proceedings of ACM
SIGGRAPH 1995, pages 429–436, 1995.

E. H. W. Meijering. A chronology of interpolation: From ancient astronomy to
modern signal processing. Proceedings of the IEEE, 90(3):319–342, 2002.

E. H. W. Meijering, W. J. Niessen, J. P. W. Pluim, and M. A. Viergever. Quantitative
comparison of sinc-approximating kernels for medical image interpolation. In
Medical Image Computing and Computer-Assisted Intervention, volume 1679 of
Lecture Notes in Computer Science, pages 210–217. 1999a.

E. H. W. Meijering, K. J. Zuiderveld, and M. A. Viergever. Image reconstruction
by convolution with symmetrical piecewise nth-order polynomial kernels. IEEE
Transactions on Image Processing, 8(2):192–201, 1999b.

E. H. W. Meijering, W. J. Niessen, and M. A. Viergever. Quantitative evaluation
of convolution-based methods for medical image interpolation. Medical Image
Analysis, 5(2):111–126, 2001.

D. P. Mitchell and A. N. Netravali. Reconstruction filters in computer graphics.
Computer Graphics (Proceedings of ACM SIGGRAPH 1988), 22(4):221–228,
1988.

A. Muñoz, T. Blu, and M. Unser. Least-squares image resizing using finite differences.
IEEE Transactions on Image Processing, 10(9):1365–1378, 2001.

D. Nehab, A. Maximo, R. S. Lima, and H. Hoppe. GPU-efficient recursive filtering
and summed-area tables. ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH Asia 2011), 30(6):176, 2011.

S. K. Park and R. A. Schowengerdt. Image reconstruction by parametric cubic
convolution. Computer Vision, Graphics & Image Processing, 23(3):258–272,
1983.

J. A. Parker, R. V. Kenyon, and D. E. Troxel. Comparison of interpolating methods
for image resampling. IEEE Transactions on Medical Imaging, MI-2(1):31–39,
1983.

K. Perlin. State of the art in image synthesis, 1985. SIGGRAPH 1985 Course Notes.

Pixar. The RenderMan Interface, 2005. Version 3.2.1.

D. Ruijters, B. M. ter Haar Romeny, and P. Suetens. Efficient GPU-based texture
interpolation using uniform B-splines. Journal of Graphics, GPU & Game Tools,
13(4):61–69, 2008.

R. W. Schafer and L. R. Rabiner. A digital signal processing approach to interpolation.
Proceedings of the IEEE, 61(6):692–702, 1973.

A. Schaum. Theory and design of local interpolators. Computer Vision, Graphics &
Image Processing, 55(6):464–481, 1993.



84 Bibliography

C. E. Shannon. Communication in the presence of noise. Proceedings of the Institute
of Radio Engineers, 37(1):10–21, 1949.

C. Sigg and M. Hadwiger. Fast third-order texture filtering. In M. Pharr, editor, GPU
Gems 2, chapter 20, pages 313–329. Addison Wesley Professional, 2005.

G. Strang and G. Fix. A Fourier analysis of the finite element variational method. In
Constructive Aspects of Functional Analysis, pages 793–840, 1973.

P. Thévenaz, T. Blu, and M. Unser. Interpolation revisited. IEEE Transactions on
Medical Imaging, 19(17):739–758, 2000.

M. Unser. Sampling—50 years after Shannon. Proceedings of the IEEE, 88(4):
569–587, 2000.

M. Unser and A. Aldroubi. A general sampling theory for nonideal acquisition
devices. IEEE Transactions on Signal Processing, 42(11):2915–2925, 1994.

M. Unser, A. Aldroubi, and M. Eden. Fast B-spline transforms for continuous image
representation and interpolation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(3):277–285, 1991.

M. Unser, A. Aldroubi, and M. Eden. Enlargement or reduction of digital images
with minimum loss of information. IEEE Transactions on Image Processing, 4(3):
247–258, 1995a.

M. Unser, P. Thénevaz, and L. Yaroslavsky. Convolution-based interpolation for fast,
high-quality rotation of images. IEEE Transactions on Image Processing, 4(10):
1371–1381, 1995b.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment: From
error visibility to structural similarity. IEEE Transactions on Image Processing, 13
(4):600–612, 2004.


	Introduction
	Background
	Reconstruction kernels
	Analysis filters

	Basic notation, definitions, and properties
	Fundamental algorithms
	Interpolation
	Inverse discrete convolution
	Orthogonal projection
	Oblique projection

	Translation and scaling
	Translation of discretized signals
	Scaling of discretized signals

	Approximation of derivatives
	Generalized prefiltering and estimator variance
	Practical considerations
	Grid structure
	Efficient use of piecewise-polynomial kernels
	Prefiltering, reconstruction, and color spaces
	Range constraints

	Theoretical considerations
	Experiments and analyses
	Conclusions
	Appendices
	Source-code
	Bibliography



