

Real-Time Fur over Arbitrary Surfaces
Jerome Lengyel
Microsoft Research

http://research.microsoft.com/~jedl

Emil Praun
Princeton University

http://www.cs.princeton.edu/~emilp

Adam Finkelstein
Princeton University

http://www.cs.princeton.edu/~af

Hugues Hoppe
Microsoft Research

http://research.microsoft.com/~hoppe

Abstract
We introduce a method for real-time rendering of fur on surfaces
of arbitrary topology. As a pre-process, we simulate virtual hair
with a particle system, and sample it into a volume texture. Next,
we parameterize the texture over a surface of arbitrary topology
using “lapped textures” — an approach for applying a sample
texture to a surface by repeatedly pasting patches of the texture
until the surface is covered. The use of lapped textures permits
specifying a global direction field for the fur over the surface. At
runtime, the patches of volume textures are rendered as a series of
concentric shells of semi-transparent medium. To improve the
visual quality of the fur near silhouettes, we place “fins” normal
to the surface and render these using conventional 2D texture
maps sampled from the volume texture in the direction of hair
growth. The method generates convincing imagery of fur at
interactive rates for models of moderate complexity. Further-
more, the scheme allows real-time modification of viewing and
lighting conditions, as well as local control over hair color, length,
and direction.
Additional Keywords: hair rendering, lapped textures, volume textures.

1. Introduction
A distinguishing characteristic of mammals is that they have hair.
For many computer graphics applications, a sense of immersion
requires the presence of realistic virtual creatures. Unfortunately,
generating convincing imagery of people and animals remains a
challenging problem, in part because the hair often looks artificial.
This paper presents a method for rendering realistic fur over
surfaces of arbitrary topology at interactive frame rates. In this
paper, we use the terms fur and hair interchangeably.
Perhaps the most effective imagery of fur is due to Kajiya and
Kay [4], who ray-traced a model with explicit geometric detail
represented as volume textures. In the computer animation indus-
try, fine geometric modeling of fur led to convincing artificial
mammals, such as the lemurs in Disney’s Dinosaur [1]. Another
example is the dog fur in 101 Dalmatians [2], which was repre-
sented using a stochastic (rather than geometric) model.
However, rendering hair is computationally expensive, and the
majority of the methods to date are too slow for interactive use
(see Thalmann et al. [10] for a survey). In an interactive setting,
Van Gelder and Wilhelms [11] showed that various parameters of
fur can be manipulated in real time. However, their renderer is
limited to drawing polylines, which limits the number of hairs that
can be drawn per frame as well as the realism of the result.
Recent work by Meyer and Neyret [6][7] showed that rendering
volume textures at interactive rates is possible by exploiting
graphics card hardware. Lengyel [5] subsequently developed a
similar method optimized for the specific case of fur. The method
renders a furry surface as a series of concentric, semi-transparent,

textured shells containing samples of the hair volume. By exploit-
ing conventional texture mapping, the method allows interactive
rendering of furry models represented by thousands of polygons.
Our approach is based on the shell method and thus achieves
interactive frame rates. However, in this project, we address three
limitations of previous work. First, the shell method requires a
global parameterization of the surface. While this is easy to
achieve for special cases (such as a torus or disc), it prevents
application of this method to a surface of arbitrary topology,
without first cutting the surface into pieces and rendering them
separately. Second, the method requires a significant amount of
texture memory, because each shell needs a separate texture
covering the whole surface and these textures must be large
enough to resolve individual hairs. Finally, the shell method
provides an effective approximation to volume textures only when
the viewing direction is approximately normal to the surface. Near
silhouettes where shells are seen at grazing angles, the hair ap-
pears to be overly transparent, and gaps become evident between
the shells.
In our work, we address the first two limitations of the shell
method – parameterization and texture memory size – by using
the lapped textures of Praun et al. [8]. Lapped textures cover a
surface of arbitrary topology by repeatedly pasting small patches
of example texture over the surface (Figure 1). Because the
surface is covered by a collection of patches, we only need local
parameterizations within the individual patches, as opposed to a
global parameterization. Furthermore, the many patches instanti-
ated over the surface can all share the same texture, thus greatly
reducing texture memory overhead.
The third limitation – silhouettes – is not specific to the shell
method. In interactive settings such as games, designers use low-
polygon-count models to maintain high frame rates. Detailed
textures help to embellish these coarse models, except at the
silhouette where tangent discontinuities detract from the visual
quality. Furthermore, in the specific case of fur, the visual cues at
the silhouette play a critical role in perceiving the characteristics
of the fur. Polygonal artifacts may be alleviated by using higher
resolution models, or by clipping to a high-resolution 2D contour
as described by Sander et al. [9]. To address the silhouette prob-
lem, we introduce a scheme for rendering textured fins normal to
the surface near silhouettes. The fin textures are created using the
same volumetric model for hair as the shell textures, but sampled
in a different direction more appropriate for oblique viewing.
Alternatively, an artist may create a fin texture directly.
We offer interactive control over local and global properties of the
fur, such as its direction, length, or color. For example, the user
may globally adjust the angle of the hair with respect to the
surface or may locally adjust the hair direction using a “combing
tool”.
The principal contributions of this work are: (1) integrating the
shell method with lapped textures to allow for arbitrary topology
and to reduce texture requirements; (2) improving the visual
quality of silhouettes by rendering fins; and (3) demonstrating
interactive local and global control over hair properties.

2. Approach
Here we present a brief overview of our approach, followed by a
more detailed explanation in Sections 2.1 through 2.4.
Our system takes as input a triangle mesh representing the crea-
ture and a parametric model for the hair. Prior to runtime, we
perform two operations: geometry preprocessing, in which we
compute the lapped texture patches parameterizing the surface;
and texture preprocessing, in which we grow a geometric model
of a patch of hair and sample it into the shell and fin textures. At
runtime we render a series of textured, concentric shells, offset
from the original surface, as well as several fins perpendicular to
the surface, to better suggest hair near the silhouettes.

(a) Input: mesh and vector field; (b) Output: lapped patches

Figure 1. Geometry preprocessing: creation of lapped patches.

2.1 Geometry preprocessing
To build the patch parameterizations, we adapt the lapped textures
scheme introduced by Praun et al. [8]. In brief, the method grows
patches over random uncovered locations on the surface and
locally parameterizes them onto the texture domain using a fast
optimization process. The resulting collection of patches covers
the surface, as shown in Figure 1.
In the original lapped textures construction, the seams between
the patches are made less noticeable by letting the patches over-
lap, assigning the patches irregular boundaries, and alpha-
blending these boundaries. For many types of hair textures (in
particular, hair standing straight up), we find these measures to be
unnecessary. Instead, we can simply let the patch boundaries

correspond with edges in the mesh, and completely eliminate
overlap between the patches. Because hair textures are stochastic,
the resulting texture “discontinuities” along mesh edges are
usually imperceptible. The main benefit of this non-overlapping
texture parameterization is that each mesh triangle in a shell is
rendered only once, rather than once for each patch overlapping it.
Another benefit is that the texture patch need not have a boundary.
Instead, the texture patch can be toroidal and therefore cover large
surface patches through tiling. The results presented here are
based on these non-overlapped parameterizations.
Even with a non-overlapped parameterization, we still benefit
from the alignment of the patches to a global direction field over
the surface. The consistent direction field helps hide the seams
between patches when the hair has a preferred growth direction
(e.g. the curly chimp hair in Figure 5). Also, we still benefit from
the irregular “splotch” shape which gives each resulting patch an
uneven mesh-edge boundary. For the special case of hair standing
straight up, we can omit the global direction field and instead
create an isotropic parameterization, where the local orientation of
each patch does not align across adjacent patches [8].

2.2 Texture preprocessing
Using the method introduced by Lengyel [5], we create the shell
texture based on the geometry of hair strands. The hair strands
are generated through a particle system simulation. The simula-
tion takes place within a small rectangular volume, with toroidal
symmetry along the two skin axes so that the volume texture can
be tiled. By varying the parameters, we can obtain hair that is
straight, curly, sparse, dense, etc. (Figure 5).
Shell textures. To review, the shell method [5] creates a four-
channel (RGBA) image for each layer of the shell model by
overlaying a grid on the bounding box containing the hair strands.
At each grid point we compute a color and opacity by intersecting
a tall Gaussian filter with the geometric hair. The filter is tall
because the inter-shell spacing is much greater than the grid
spacing within each shell. For the innermost shell, all samples are
assigned full opacity since this layer represents the skin surface.
To combine the shell method with lapped textures, we use the
parameterization of each surface patch to access the layers of shell
texture. Thus, for each layer, a texture patch is repeatedly in-
stanced to produce a semi-transparent shell over the entire mesh.
The process is repeated for each layer (Figure 4c). In our imple-
mentation, we typically sample 16 layers, and the texture patches
have a resolution of 128 × 128.
Fin texture. We define a single instance of fin texture to be used
on all the edges near silhouettes of the model. The texture is
generated by compositing a slab of the geometric hair along an
arbitrary surface tangent direction. The width of the slab (Figure
2, upper left, cyan box) determines the density of hair associated
with the fin (Figure 2c). When rendering each fin, we randomly
pick a texture coordinate interval that scales with edge length. The
scaling factor is identical to that used to parameterize the mesh
faces in the lapped texture construction. Ideally, every edge would
have its own fin texture, sampled across the appropriate section of
the geometric hair model, accounting for local mesh curvatures as
well as the local density of fins. However, we found this to be
unnecessary (since the visual quality of the models using a gener-
ic fin texture is good), and it would impose a drastic increase in
texture storage. Since local density of fins depends on the model
complexity, we manually select for each model the width of the
texture slab composited to create the fin, choosing a density that
seems visually appropriate for the given model and texture.

(a) geometric hair (b) shell textures (c) fin texture

Figure 2. Texture preprocessing. For illustration, the spacing
between shell texture layers in (b) is exaggerated.

 offset shells

original mesh extruded fin

Figure 3. Runtime rendering: offset shells and extruded fin.

2.3 Runtime rendering
This section describes the three rendering steps (surface, fins, and
shells) performed at runtime, in the order they are rendered.
Surface rendering (Figure 4a). For each frame, we first render an
opaque version of the whole mesh, setting the Z-buffer. This
includes both the innermost layer (“skin”) of furry regions and the
surface corresponding to the non-furry regions of the creature.
Fin rendering (Figure 4b). Next, we render textured fins. Each
fin is a quadrilateral that is attached to a mesh edge and extends
out along the surface normal direction (Figure 3). We have found
that we obtain better results by rendering only the fins near the
model silhouette. To maintain temporal coherence, we gradually
fade-in the fins as they approach the silhouette, using the follow-
ing scheme. For each mesh edge, we compute the dot product 𝑝
between the fin normal and the infinite-viewer eye point. We then
multiply the fin opacity by max(0, 2|𝑝| − 1). We collect the fins
with nonzero alpha and render them while testing, but not writing,
the Z-buffer. (For comparison, Figure 4e shows the result of
drawing all fins at full opacity.) Note that we render the fins
corresponding to some edges that are invisible (i.e. just over the
horizon), since the outer tips of such fins may actually be visible.
The number of rendered fins is a small fraction of the total num-
ber of edges and is dominated by the faces in the shell layers.
Thus, fin rendering has an relatively insignificant impact on the
rendering performance of the system, yet it greatly improves the
visual quality of the results.
Shell rendering (Figure 4c). Next, we render the offset shells
from innermost to outermost (Figure 3). For each layer we
composite all the patches of the (semi-transparent) lapped texture
over what has already been rendered. During shell rendering, we
both test and write the Z-buffer, and enable alpha-testing to avoid
writing Z for pixels with zero coverage. We enable texture wrap-
ping so that the shell texture can tile across large patches.

2.4 Rendering discussion
Hair lighting. We apply the shading method described in [5],
which uses a modified Banks/Kajiya-Kay lighting model stored in
a low resolution (32×32) texture-map lookup table:

HairLighting(𝑢, 𝑣) = 𝐾𝑎 + 𝐾𝑑(1 − 𝑢2)𝑃𝑑/2 + 𝐾𝑠(1 − 𝑣2)𝑃𝑠/2
𝑢 = 𝑇 ⋅ 𝐿 // cos(angle) = 𝑢 ; sin(angle) = (1 − 𝑢2)1/2
𝑣 = 𝑇 ⋅ 𝐻 .

𝑇 is the hair direction stored at each vertex. 𝐿 is the light direc-
tion. 𝐻 is the half-vector between the eye and the light. 𝐾𝑎, 𝐾𝑑,
and 𝐾𝑠 are the ambient, diffuse, and specular colors. 𝑃𝑑 and 𝑃𝑠
are the diffuse and specular powers. To compute 𝑢 and 𝑣 at
runtime, 𝑇 is stored as a set of texture coordinates, and the texture
matrix is loaded with the current 𝐿 and 𝐻 vectors. We use the
Banks self-shadowing approximation to darken the shells near the
skin. In the current implementation, we use the same vector to
store both the hair direction 𝑇 and the shell-offset vector 𝑐𝑣

(Section 3). This limits the effectiveness of the lighting to hair
that is aligned mostly in the vertical direction. In the future, we
plan to store both 𝑇 and 𝑐𝑣 at each vertex. Moreover, we hope to
use a pixel shader with a hair-direction map that is filtered from
the original hair geometry.
Visibility. Since the triangles associated with the shells and fins
intersect each other in space, there does not exist a correct visibil-
ity order for rendering them. The shells offer the best visual
approximation where the surface is oriented towards the viewer,
whereas the fins look best near the surface silhouette. Our ap-
proach is to rely on the fin fading to locally control whether shells
or fins appear more prominently.
Level-of-detail control. As the model recedes in the distance, we
can reduce the number of rendered shells (Figure 4g and 4j).
However, abruptly changing the number of shells can result in
visual pops. We make these transitions visually smooth by blend-
ing between shell textures as follows. Given a set of shell textures,
we composite together successive pairs of shells to form the even
shells of the coarser level, while we leave the odd shells of the
coarser level completely transparent. We repeat until only one
shell remains. When the graphics hardware has finished transi-
tioning to a coarser level over the entire model, we omit rendering
of odd-numbered shells at the finer level. We determine the
schedule of the blend based on the distance from the viewer to the
model. The inter-level blending is performed on the volume
texture patch before the full shell rendering.
Programmable vertex shaders. Within the coming year, com-
modity graphics hardware will have programmable vertex
shaders. Such shaders will be ideal for accelerating shell render-
ing, since they can directly evaluate the geometric offsets between
shells, in fact using only two additional shader instructions.
Overlapped parameterization. The original lapped textures
covered a surface using overlapping patches, with patch bounda-
ries defined at pixel granularity. Since patches were opaque,
some faces were completely covered using a single patch (the
topmost one covering the face). However, other faces had contri-
bution from several patches. Since our hair textures are not
opaque, we would need to render all faces with all patches that
overlap them (not just the topmost). This would result in a slower
frame rate and in hair density variations (Figure 4f). As men-
tioned in Section 2.1, we chose to extend the patches to the
nearest edge boundaries, and to only render the topmost patch for
each face. This basically amounts to producing a non-overlapping
tiling of the surface. Since hair textures are stochastic in nature,
visual masking tends to hide these polygonal discontinuities.

3. Interactive controls
In addition to traditional camera and lighting parameters, we also
provide local interactive control over three aspects of the hair
model — color, length, and direction. These attributes are speci-
fied as fields on the surface mesh. Currently, we associate to each
mesh vertex a color and a vector 𝑐𝑣 encoding length and direction.
Hair color. Using the graphics hardware, we linearly interpolate
the vertex colors over each face and edge, in order to modulate the
shell and fin textures. For example, see the dog in Figure 5. For
finer control, one could instead specify color by painting into a
texture atlas, as described by Hanrahan and Haeberli [3].
Hair length. In our prototype, we use by default 16 shell tex-
tures, spaced apart by one thousandth of the model diameter. We
can adjust the length of the hair by varying the number and
spacing of these layers. For local control, we offset the shell

layers at each vertex by a fraction of 𝑐𝑣. We have found that
making the spacing between layers too large can lead to visible
artifacts, for example straightening curly hair, or revealing the
discrete nature of the layers. Thus, very long hair involves adding
layers to the model, at the expense of rendering performance.
Hair direction. Hair can be combed by shearing the geometries
of the shells and fins with respect to the base surface. Shearing is
achieved by adding a tangential component to the vector 𝑐𝑣 stored
at each mesh vertex. A simple choice for this tangential direction
is the direction field used when building the lapped texture (see
Section 2.1). The user can then globally control the slant of the
hair, adjusting from hair standing straight up to hair tilted at 45°.
(At larger angles we lose the visual correlation of individual
strands across layers.) As shown in Figure 4k and the accompa-
nying video, local combing is done by dragging a circle to select
an active region, and then dragging the selection in the plane of
the current view to add a delta to the 𝑐𝑣 of each selected vertex.

4. Results
Figure 5 and the accompanying videotape show a variety of furry
models rendered in our prototype application. In these examples,
the textures are sampled in 16 layers (except the dice which use
32 layers), where the image in each layer has a resolution of
128×128 pixels. The rendering rates shown in the table below
are obtained on a AMD-K7 700MHz PC with an NVIDIA Ge-
Force DDR 32MB card, using Microsoft DirectX 7. The dog is
slower due to the extra bandwidth required by the per-vertex
colors.

Model bunny cat spider dog chimp 1die
faces 5,000 5,000 5,000 5,000 4,910 1,450
edges 7,547 7,500 7,500 7,500 7,365 2,400
patches 306 252 338 192 228 246
½ layers (fps) 23 26 31 20 21 25
All layers (fps) 12 14 15 10 11 13

Table 1: Model complexities and rendering rates.

Note that the polygon counts for these models are low. We
observe that the mottled nature of fur obscures tiny details in the
models, thereby hiding objectionable tangent discontinuities along
the low-resolution silhouettes.

The stored textures include the 16 layers of 128×128 shell texture
and the single 512×64 fin texture. With full 32 bit/texel represen-
tation and mipmapping, these require a total texture memory
footprint of 1.6 MB. Use of DXT5 texture compression reduces
the memory requirement by a factor of 3, but makes the hair look
thicker due to alpha compression artifacts. For the common case
of hair standing straight up, all the shell textures can be encoded
using a single image layer, for a total of only 200 KB (skin + shell
+ fin). In this case, an option is to taper the hair away from the
skin by modulating the shell texture with an alpha ramp.

5. Summary and future work
We have shown that lapped textures and layered shells can be
combined to effectively render hair. Together, they permit inter-
active high-resolution hair rendering over large, arbitrary surfaces
using a moderate texture footprint. We introduced fin textures to
improve the appearance of silhouettes, and showed that shells and
fins integrate seamlessly. Finally, we presented techniques for
level-of-detail transition and for user control of hair color, length,
and direction.

This work suggests a number of areas for future research, such as:
Multiple hair models on the same creature. Real creatures have
different kinds of hair. While it would be trivial to cut the model
into separately rendered parts, a more interesting solution would
allow a smooth transition from one kind of hair to another.
More interesting combing effects. According to the celebrated
“hairy ball theorem”, features such cowlicks, parts, and swirls are
an unavoidable fact of life. Modeling such features may involve
new representations, combing tools, and rendering techniques.
Shell multitexturing. It may be possible to render several shells
in a single pass by “bumping” their texture coordinates according
to vertex normals during a multitexturing combiner operation.
Programmable pixel shaders. As mentioned in Section 2.4,
upcoming programmable vertex shaders will soon be able to
evaluate both hair lighting and shell geometric offsets. Future
programmable pixel shaders may be able to perform per-pixel
lighting, which would be useful for wavy or curly hair patterns.
Hair dynamics. The hair could be moved according to physical
simulation by shearing the layers. It may be possible to part the
hair by allowing the shells to separate laterally.

References
[1] ESKURI, N. The art and technology of Disney's "Dinosaur".

SIGGRAPH 2000 Course Notes.

[2] GOLDMAN, D. Fake fur rendering. Proceedings of SIG-
GRAPH 97, pp. 127-134.

[3] HANRAHAN, P. AND HAEBERLI, P. Direct WYSIWYG painting
and texturing on 3D shapes. Proceedings of SIGGRAPH 90,
pp. 215-223.

[4] KAJIYA, J. T., AND KAY, T. L. Rendering fur with three dimen-
sional textures. Proceedings of SIGGRAPH 89, pp. 271-280.

[5] LENGYEL, J. Real-time fur. Eurographics Rendering Work-
shop 2000, pp. 243-256.

[6] MEYER, A., AND NEYRET, F. Interactive volume textures,
Eurographics Rendering Workshop 1998, pp. 157-168.

[7] NEYRET, F. Modeling, animating, and rendering complex
scenes using volumetric textures. IEEE Transactions on Visu-
alization and Computer Graphics, 4(1), pp. 55-70, 1998.

[8] PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. Lapped textures.
Proceedings of SIGGRAPH 2000, Computer Graphics, Annu-
al Conference Series, pp. 465-470.

[9] SANDER, P., GU, X., GORTLER, S., HOPPE, H., AND SNYDER, J.
Silhouette clipping. Proceedings of SIGGRAPH 2000, Com-
puter Graphics, Annual Conference Series, pp. 327-334.

[10] THALMANN, N. M., CARION, S., COURCHESNE, M, VOLINO, P.,
AND WU, Y. Virtual clothes, hair and skin for beautiful top
models. Computer Graphics International 1996.

[11] VAN GELDER, A., AND WILHELMS, J. An interactive fur
modeling technique. Proceedings of Graphics Interface 1997.

Acknowledgements
Scott Posch wrote the DX8 vertex shader for offsetting the shells
on the fly. Tom Forsyth discussed potential tradeoffs between
geometric layers and multistage texture layers. We appreciate the
helpful suggestions given by Tom Funkhouser, Lee Markosian,
and the anonymous reviewers. We thank Stanford University and
Viewpoint Datalabs for the geometric models.

(a) surface (inner, opaque shell) (b) fins (alpha-blended) (c) shells (non-overlapped patches)

(d) final image (a+b+c) (e) fins (not alpha-blended) (f) shells (overlapped patches)

(g) 8-shell level of detail (h) globally lengthened hair (i) globally combed hair

(j) 4-shell level of detail (k) local selection (l) local combing

Figure 4. Overview of our fur rendering approach. (Images (e) and (f) are not direct results but are used to motivate choices in our approach.)

Figure 5. Furry objects. Flat-shaded meshes in the top row reveal the low triangle counts of the models. Renderings below use 16 shell
layers (except dice which use 32). Close-ups appear in circles. The spider, Chia® cat, and chimp use fin textures sampled from the volume
texture, whereas the other models use fins computed from hair that is longer and curlier than the hair used to create the shell textures.

	1. Introduction
	2. Approach
	2.1 Geometry preprocessing
	2.2 Texture preprocessing
	2.3 Runtime rendering
	2.4 Rendering discussion

	3. Interactive controls
	4. Results
	5. Summary and future work
	References
	Acknowledgements

