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Abstract 
We introduce a method for real-time rendering of fur on surfaces 
of arbitrary topology.  As a pre-process, we simulate virtual hair 
with a particle system, and sample it into a volume texture.  Next, 
we parameterize the texture over a surface of arbitrary topology 
using “lapped textures” — an approach for applying a sample 
texture to a surface by repeatedly pasting patches of the texture 
until the surface is covered.  The use of lapped textures permits 
specifying a global direction field for the fur over the surface.  At 
runtime, the patches of volume textures are rendered as a series of 
concentric shells of semi-transparent medium.  To improve the 
visual quality of the fur near silhouettes, we place “fins” normal 
to the surface and render these using conventional 2D texture 
maps sampled from the volume texture in the direction of hair 
growth.  The method generates convincing imagery of fur at 
interactive rates for models of moderate complexity.  Further-
more, the scheme allows real-time modification of viewing and 
lighting conditions, as well as local control over hair color, length, 
and direction. 
Additional Keywords: hair rendering, lapped textures, volume textures. 

1. Introduction 
A distinguishing characteristic of mammals is that they have hair. 
For many computer graphics applications, a sense of immersion 
requires the presence of realistic virtual creatures. Unfortunately, 
generating convincing imagery of people and animals remains a 
challenging problem, in part because the hair often looks artificial. 
This paper presents a method for rendering realistic fur over 
surfaces of arbitrary topology at interactive frame rates.  In this 
paper, we use the terms fur and hair interchangeably. 
Perhaps the most effective imagery of fur is due to Kajiya and 
Kay [4], who ray-traced a model with explicit geometric detail 
represented as volume textures. In the computer animation indus-
try, fine geometric modeling of fur led to convincing artificial 
mammals, such as the lemurs in Disney’s Dinosaur [1].  Another 
example is the dog fur in 101 Dalmatians [2], which was repre-
sented using a stochastic (rather than geometric) model.  
However, rendering hair is computationally expensive, and the 
majority of the methods to date are too slow for interactive use 
(see Thalmann et al. [10] for a survey).  In an interactive setting, 
Van Gelder and Wilhelms [11] showed that various parameters of 
fur can be manipulated in real time. However, their renderer is 
limited to drawing polylines, which limits the number of hairs that 
can be drawn per frame as well as the realism of the result. 
Recent work by Meyer and Neyret [6][7] showed that rendering 
volume textures at interactive rates is possible by exploiting 
graphics card hardware. Lengyel [5] subsequently developed a 
similar method optimized for the specific case of fur. The method 
renders a furry surface as a series of concentric, semi-transparent, 

textured shells containing samples of the hair volume. By exploit-
ing conventional texture mapping, the method allows interactive 
rendering of furry models represented by thousands of polygons. 
Our approach is based on the shell method and thus achieves 
interactive frame rates. However, in this project, we address three 
limitations of previous work. First, the shell method requires a 
global parameterization of the surface. While this is easy to 
achieve for special cases (such as a torus or disc), it prevents 
application of this method to a surface of arbitrary topology, 
without first cutting the surface into pieces and rendering them 
separately. Second, the method requires a significant amount of 
texture memory, because each shell needs a separate texture 
covering the whole surface and these textures must be large 
enough to resolve individual hairs. Finally, the shell method 
provides an effective approximation to volume textures only when 
the viewing direction is approximately normal to the surface. Near 
silhouettes where shells are seen at grazing angles, the hair ap-
pears to be overly transparent, and gaps become evident between 
the shells. 
In our work, we address the first two limitations of the shell 
method – parameterization and texture memory size – by using 
the lapped textures of Praun et al. [8].  Lapped textures cover a 
surface of arbitrary topology by repeatedly pasting small patches 
of example texture over the surface (Figure 1). Because the 
surface is covered by a collection of patches, we only need local 
parameterizations within the individual patches, as opposed to a 
global parameterization. Furthermore, the many patches instanti-
ated over the surface can all share the same texture, thus greatly 
reducing texture memory overhead. 
The third limitation – silhouettes – is not specific to the shell 
method. In interactive settings such as games, designers use low-
polygon-count models to maintain high frame rates. Detailed 
textures help to embellish these coarse models, except at the 
silhouette where tangent discontinuities detract from the visual 
quality. Furthermore, in the specific case of fur, the visual cues at 
the silhouette play a critical role in perceiving the characteristics 
of the fur. Polygonal artifacts may be alleviated by using higher 
resolution models, or by clipping to a high-resolution 2D contour 
as described by Sander et al. [9]. To address the silhouette prob-
lem, we introduce a scheme for rendering textured fins normal to 
the surface near silhouettes. The fin textures are created using the 
same volumetric model for hair as the shell textures, but sampled 
in a different direction more appropriate for oblique viewing. 
Alternatively, an artist may create a fin texture directly. 
We offer interactive control over local and global properties of the 
fur, such as its direction, length, or color. For example, the user 
may globally adjust the angle of the hair with respect to the 
surface or may locally adjust the hair direction using a “combing 
tool”. 
The principal contributions of this work are: (1) integrating the 
shell method with lapped textures to allow for arbitrary topology 
and to reduce texture requirements; (2) improving the visual 
quality of silhouettes by rendering fins; and (3) demonstrating 
interactive local and global control over hair properties. 

 



2. Approach 
Here we present a brief overview of our approach, followed by a 
more detailed explanation in Sections 2.1 through 2.4. 
Our system takes as input a triangle mesh representing the crea-
ture and a parametric model for the hair. Prior to runtime, we 
perform two operations: geometry preprocessing, in which we 
compute the lapped texture patches parameterizing the surface; 
and texture preprocessing, in which we grow a geometric model 
of a patch of hair and sample it into the shell and fin textures. At 
runtime we render a series of textured, concentric shells, offset 
from the original surface, as well as several fins perpendicular to 
the surface, to better suggest hair near the silhouettes. 

  
(a) Input: mesh and vector field; (b) Output: lapped patches 

Figure 1.  Geometry preprocessing: creation of lapped patches. 

2.1 Geometry preprocessing 
To build the patch parameterizations, we adapt the lapped textures 
scheme introduced by Praun et al. [8]. In brief, the method grows 
patches over random uncovered locations on the surface and 
locally parameterizes them onto the texture domain using a fast 
optimization process. The resulting collection of patches covers 
the surface, as shown in Figure 1. 
In the original lapped textures construction, the seams between 
the patches are made less noticeable by letting the patches over-
lap, assigning the patches irregular boundaries, and alpha-
blending these boundaries.  For many types of hair textures (in 
particular, hair standing straight up), we find these measures to be 
unnecessary.  Instead, we can simply let the patch boundaries 

correspond with edges in the mesh, and completely eliminate 
overlap between the patches.  Because hair textures are stochastic, 
the resulting texture “discontinuities” along mesh edges are 
usually imperceptible.  The main benefit of this non-overlapping 
texture parameterization is that each mesh triangle in a shell is 
rendered only once, rather than once for each patch overlapping it.  
Another benefit is that the texture patch need not have a boundary.  
Instead, the texture patch can be toroidal and therefore cover large 
surface patches through tiling.  The results presented here are 
based on these non-overlapped parameterizations. 
Even with a non-overlapped parameterization, we still benefit 
from the alignment of the patches to a global direction field over 
the surface.  The consistent direction field helps hide the seams 
between patches when the hair has a preferred growth direction 
(e.g. the curly chimp hair in Figure 5).  Also, we still benefit from 
the irregular “splotch” shape which gives each resulting patch an 
uneven mesh-edge boundary. For the special case of hair standing 
straight up, we can omit the global direction field and instead 
create an isotropic parameterization, where the local orientation of 
each patch does not align across adjacent patches [8]. 

2.2 Texture preprocessing  
Using the method introduced by Lengyel [5], we create the shell 
texture based on the geometry of hair strands.  The hair strands 
are generated through a particle system simulation.  The simula-
tion takes place within a small rectangular volume, with toroidal 
symmetry along the two skin axes so that the volume texture can 
be tiled.  By varying the parameters, we can obtain hair that is 
straight, curly, sparse, dense, etc. (Figure 5). 
Shell textures. To review, the shell method [5] creates a four-
channel (RGBA) image for each layer of the shell model by 
overlaying a grid on the bounding box containing the hair strands.  
At each grid point we compute a color and opacity by intersecting 
a tall Gaussian filter with the geometric hair.  The filter is tall 
because the inter-shell spacing is much greater than the grid 
spacing within each shell. For the innermost shell, all samples are 
assigned full opacity since this layer represents the skin surface. 
To combine the shell method with lapped textures, we use the 
parameterization of each surface patch to access the layers of shell 
texture.  Thus, for each layer, a texture patch is repeatedly in-
stanced to produce a semi-transparent shell over the entire mesh.  
The process is repeated for each layer (Figure 4c).  In our imple-
mentation, we typically sample 16 layers, and the texture patches 
have a resolution of 128 × 128. 
Fin texture. We define a single instance of fin texture to be used 
on all the edges near silhouettes of the model. The texture is 
generated by compositing a slab of the geometric hair along an 
arbitrary surface tangent direction. The width of the slab (Figure 
2, upper left, cyan box) determines the density of hair associated 
with the fin (Figure 2c). When rendering each fin, we randomly 
pick a texture coordinate interval that scales with edge length. The 
scaling factor is identical to that used to parameterize the mesh 
faces in the lapped texture construction. Ideally, every edge would 
have its own fin texture, sampled across the appropriate section of 
the geometric hair model, accounting for local mesh curvatures as 
well as the local density of fins. However, we found this to be 
unnecessary (since the visual quality of the models using a gener-
ic fin texture is good), and it would impose a drastic increase in 
texture storage. Since local density of fins depends on the model 
complexity, we manually select for each model the width of the 
texture slab composited to create the fin, choosing a density that 
seems visually appropriate for the given model and texture. 

 
(a) geometric hair (b) shell textures (c) fin texture 

Figure 2.  Texture preprocessing.  For illustration, the spacing 
between shell texture layers in (b) is exaggerated. 



 offset shells 

original mesh extruded fin 
 

Figure 3.  Runtime rendering: offset shells and extruded fin. 

2.3 Runtime rendering 
This section describes the three rendering steps (surface, fins, and 
shells) performed at runtime, in the order they are rendered. 
Surface rendering (Figure 4a). For each frame, we first render an 
opaque version of the whole mesh, setting the Z-buffer. This 
includes both the innermost layer (“skin”) of furry regions and the 
surface corresponding to the non-furry regions of the creature. 
Fin rendering (Figure 4b). Next, we render textured fins.  Each 
fin is a quadrilateral that is attached to a mesh edge and extends 
out along the surface normal direction (Figure 3).  We have found 
that we obtain better results by rendering only the fins near the 
model silhouette.  To maintain temporal coherence, we gradually 
fade-in the fins as they approach the silhouette, using the follow-
ing scheme.  For each mesh edge, we compute the dot product 𝑝 
between the fin normal and the infinite-viewer eye point. We then 
multiply the fin opacity by max(0, 2|𝑝| − 1). We collect the fins 
with nonzero alpha and render them while testing, but not writing, 
the Z-buffer.  (For comparison, Figure 4e shows the result of 
drawing all fins at full opacity.)  Note that we render the fins 
corresponding to some edges that are invisible (i.e. just over the 
horizon), since the outer tips of such fins may actually be visible. 
The number of rendered fins is a small fraction of the total num-
ber of edges and is dominated by the faces in the shell layers. 
Thus, fin rendering has an relatively insignificant impact on the 
rendering performance of the system, yet it greatly improves the 
visual quality of the results. 
Shell rendering (Figure 4c). Next, we render the offset shells 
from innermost to outermost (Figure 3).  For each layer we 
composite all the patches of the (semi-transparent) lapped texture 
over what has already been rendered.  During shell rendering, we 
both test and write the Z-buffer, and enable alpha-testing to avoid 
writing Z for pixels with zero coverage. We enable texture wrap-
ping so that the shell texture can tile across large patches. 

2.4 Rendering discussion 
Hair lighting.  We apply the shading method described in [5], 
which uses a modified Banks/Kajiya-Kay lighting model stored in 
a low resolution (32×32) texture-map lookup table:  

HairLighting(𝑢, 𝑣) = 𝐾𝑎 + 𝐾𝑑(1 − 𝑢2)𝑃𝑑/2 + 𝐾𝑠(1 − 𝑣2)𝑃𝑠/2 
𝑢 = 𝑇 ⋅ 𝐿    // cos(angle) = 𝑢 ;   sin(angle) = (1 − 𝑢2)1/2 
𝑣 = 𝑇 ⋅ 𝐻  . 

𝑇 is the hair direction stored at each vertex.  𝐿 is the light direc-
tion.  𝐻 is the half-vector between the eye and the light.  𝐾𝑎, 𝐾𝑑, 
and 𝐾𝑠 are the ambient, diffuse, and specular colors.  𝑃𝑑 and 𝑃𝑠 
are the diffuse and specular powers.  To compute 𝑢 and 𝑣 at 
runtime, 𝑇 is stored as a set of texture coordinates, and the texture 
matrix is loaded with the current 𝐿 and 𝐻 vectors.  We use the 
Banks self-shadowing approximation to darken the shells near the 
skin.  In the current implementation, we use the same vector to 
store both the hair direction 𝑇 and the shell-offset vector 𝑐𝑣 

(Section 3).  This limits the effectiveness of the lighting to hair 
that is aligned mostly in the vertical direction. In the future, we 
plan to store both 𝑇 and 𝑐𝑣 at each vertex.  Moreover, we hope to 
use a pixel shader with a hair-direction map that is filtered from 
the original hair geometry. 
Visibility.  Since the triangles associated with the shells and fins 
intersect each other in space, there does not exist a correct visibil-
ity order for rendering them.  The shells offer the best visual 
approximation where the surface is oriented towards the viewer, 
whereas the fins look best near the surface silhouette.  Our ap-
proach is to rely on the fin fading to locally control whether shells 
or fins appear more prominently. 
Level-of-detail control.  As the model recedes in the distance, we 
can reduce the number of rendered shells (Figure 4g and 4j).  
However, abruptly changing the number of shells can result in 
visual pops. We make these transitions visually smooth by blend-
ing between shell textures as follows. Given a set of shell textures, 
we composite together successive pairs of shells to form the even 
shells of the coarser level, while we leave the odd shells of the 
coarser level completely transparent.  We repeat until only one 
shell remains. When the graphics hardware has finished transi-
tioning to a coarser level over the entire model, we omit rendering 
of odd-numbered shells at the finer level.  We determine the 
schedule of the blend based on the distance from the viewer to the 
model. The inter-level blending is performed on the volume 
texture patch before the full shell rendering. 
Programmable vertex shaders.  Within the coming year, com-
modity graphics hardware will have programmable vertex 
shaders.  Such shaders will be ideal for accelerating shell render-
ing, since they can directly evaluate the geometric offsets between 
shells, in fact using only two additional shader instructions. 
Overlapped parameterization.  The original lapped textures 
covered a surface using overlapping patches, with patch bounda-
ries defined at pixel granularity.  Since patches were opaque, 
some faces were completely covered using a single patch (the 
topmost one covering the face).  However, other faces had contri-
bution from several patches.  Since our hair textures are not 
opaque, we would need to render all faces with all patches that 
overlap them (not just the topmost).  This would result in a slower 
frame rate and in hair density variations (Figure 4f).  As men-
tioned in Section 2.1, we chose to extend the patches to the 
nearest edge boundaries, and to only render the topmost patch for 
each face.  This basically amounts to producing a non-overlapping 
tiling of the surface.  Since hair textures are stochastic in nature, 
visual masking tends to hide these polygonal discontinuities. 

3. Interactive controls 
In addition to traditional camera and lighting parameters, we also 
provide local interactive control over three aspects of the hair 
model — color, length, and direction.  These attributes are speci-
fied as fields on the surface mesh.  Currently, we associate to each 
mesh vertex a color and a vector 𝑐𝑣 encoding length and direction. 
Hair color.  Using the graphics hardware, we linearly interpolate 
the vertex colors over each face and edge, in order to modulate the 
shell and fin textures.  For example, see the dog in Figure 5.  For 
finer control, one could instead specify color by painting into a 
texture atlas, as described by Hanrahan and Haeberli [3]. 
Hair length.  In our prototype, we use by default 16 shell tex-
tures, spaced apart by one thousandth of the model diameter. We 
can adjust the length of the hair by varying the number and 
spacing of these layers.  For local control, we offset the shell 



layers at each vertex by a fraction of 𝑐𝑣.  We have found that 
making the spacing between layers too large can lead to visible 
artifacts, for example straightening curly hair, or revealing the 
discrete nature of the layers. Thus, very long hair involves adding 
layers to the model, at the expense of rendering performance. 
Hair direction.  Hair can be combed by shearing the geometries 
of the shells and fins with respect to the base surface.  Shearing is 
achieved by adding a tangential component to the vector 𝑐𝑣 stored 
at each mesh vertex.  A simple choice for this tangential direction 
is the direction field used when building the lapped texture (see 
Section 2.1).  The user can then globally control the slant of the 
hair, adjusting from hair standing straight up to hair tilted at 45°.  
(At larger angles we lose the visual correlation of individual 
strands across layers.)  As shown in Figure 4k and the accompa-
nying video, local combing is done by dragging a circle to select 
an active region, and then dragging the selection in the plane of 
the current view to add a delta to the 𝑐𝑣 of each selected vertex. 

4. Results 
Figure 5 and the accompanying videotape show a variety of furry 
models rendered in our prototype application.  In these examples, 
the textures are sampled in 16 layers (except the dice which use 
32 layers), where the image in each layer has a resolution of 
128×128  pixels.  The rendering rates shown in the table below 
are obtained on a AMD-K7 700MHz PC with an NVIDIA Ge-
Force DDR 32MB card, using Microsoft DirectX 7. The dog is 
slower due to the extra bandwidth required by the per-vertex 
colors. 

Model bunny cat spider dog chimp 1die 
# faces 5,000 5,000 5,000 5,000 4,910 1,450 
# edges 7,547 7,500 7,500 7,500 7,365 2,400 
# patches 306 252 338 192 228 246 
½ layers (fps) 23 26 31 20 21 25 
All layers (fps) 12 14 15 10 11 13 

Table 1: Model complexities and rendering rates.   

Note that the polygon counts for these models are low.  We 
observe that the mottled nature of fur obscures tiny details in the 
models, thereby hiding objectionable tangent discontinuities along 
the low-resolution silhouettes. 

The stored textures include the 16 layers of 128×128 shell texture 
and the single 512×64 fin texture.  With full 32 bit/texel represen-
tation and mipmapping, these require a total texture memory 
footprint of 1.6 MB.  Use of DXT5 texture compression reduces 
the memory requirement by a factor of 3, but makes the hair look 
thicker due to alpha compression artifacts.  For the common case 
of hair standing straight up, all the shell textures can be encoded 
using a single image layer, for a total of only 200 KB (skin + shell 
+ fin).  In this case, an option is to taper the hair away from the 
skin by modulating the shell texture with an alpha ramp. 

5. Summary and future work 
We have shown that lapped textures and layered shells can be 
combined to effectively render hair.  Together, they permit inter-
active high-resolution hair rendering over large, arbitrary surfaces 
using a moderate texture footprint.  We introduced fin textures to 
improve the appearance of silhouettes, and showed that shells and 
fins integrate seamlessly.  Finally, we presented techniques for 
level-of-detail transition and for user control of hair color, length, 
and direction. 

This work suggests a number of areas for future research, such as: 
Multiple hair models on the same creature.  Real creatures have 
different kinds of hair.  While it would be trivial to cut the model 
into separately rendered parts, a more interesting solution would 
allow a smooth transition from one kind of hair to another. 
More interesting combing effects.  According to the celebrated 
“hairy ball theorem”, features such cowlicks, parts, and swirls are 
an unavoidable fact of life.  Modeling such features may involve 
new representations, combing tools, and rendering techniques. 
Shell multitexturing.  It may be possible to render several shells 
in a single pass by “bumping” their texture coordinates according 
to vertex normals during a multitexturing combiner operation. 
Programmable pixel shaders.  As mentioned in Section 2.4, 
upcoming programmable vertex shaders will soon be able to 
evaluate both hair lighting and shell geometric offsets.  Future 
programmable pixel shaders may be able to perform per-pixel 
lighting, which would be useful for wavy or curly hair patterns. 
Hair dynamics.  The hair could be moved according to physical 
simulation by shearing the layers. It may be possible to part the 
hair by allowing the shells to separate laterally. 
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(a) surface (inner, opaque shell) (b) fins (alpha-blended) (c) shells (non-overlapped patches) 

   
(d) final image (a+b+c) (e) fins (not alpha-blended) (f) shells (overlapped patches) 

   
(g) 8-shell level of detail (h) globally lengthened hair (i) globally combed hair 

   
(j) 4-shell level of detail (k) local selection (l) local combing 

Figure 4. Overview of our fur rendering approach.  (Images (e) and (f) are not direct results but are used to motivate choices in our approach.) 



 
Figure 5. Furry objects.  Flat-shaded meshes in the top row reveal the low triangle counts of the models.  Renderings below use 16 shell 
layers (except dice which use 32).  Close-ups appear in circles.  The spider, Chia® cat, and chimp use fin textures sampled from the volume 
texture, whereas the other models use fins computed from hair that is longer and curlier than the hair used to create the shell textures. 
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