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We present the �rst technique to create wide-angle, high-resolution looping
panoramic videos. Starting with a 2D grid of registered videos acquired on
a robotic mount, we formulate a combinatorial optimization to determine
for each output pixel the source video and looping parameters that jointly
maximize spatiotemporal consistency. �is optimization is accelerated by
reducing the set of source labels using a graph-coloring scheme. We par-
allelize the computation and implement it out-of-core by partitioning the
domain along low-importance paths. �e merged panorama is assembled
using gradient-domain blending and stored as a hierarchy of video tiles.
Finally, an interactive viewer adaptively preloads these tiles for responsive
browsing and allows the user to interactively edit and improve local regions.
We demonstrate these techniques on gigapixel-sized looping panoramas.
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1 INTRODUCTION AND RELATED WORK
Forming image panoramas by assembling multiple photos from
a shared viewpoint is a well-studied problem [Kopf et al. 2007;
Szeliski and Shum 1997]. It involves registering the images based
on their overlapping content [Szeliski 2006], �nding good boundary
seams [Agarwala et al. 2004; Summa et al. 2012], and merging the
resulting regions to make the seams imperceptible [Agarwala 2007;
Kazhdan and Hoppe 2008; Pérez et al. 2003]. For large domains,
these computations can be parallelized and performed out-of-core
[Kazhdan et al. 2010; Philip et al. 2011, 2015].

Much research also focuses on replacing traditional static photos
by more dynamic representations such as video loops. �e pioneer-
ing technique of video textures [Schödl et al. 2000] identi�es similar
frames in a short video to create natural loops. Graphcut textures
[Kwatra et al. 2003] reduce spatiotemporal artifacts by allowing
pixels to loop back at di�erent times. Nonloopable scene regions
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can be selectively frozen, either with user guidance [Bai et al. 2012;
Beck and Burg 2012; Joshi et al. 2012] or automatically [Bai et al.
2013; Tompkin et al. 2011]. Le�ing each pixel determine its own
looping period provides additional �exibility to form good loops
[Liao et al. 2013]. Finally, applying image morphing to segmented
foreground objects enables video looping in the di�cult case of a
moving viewpoint [Sevilla-Lara et al. 2015].

Goal Our work lies at the con�uence of these two research av-
enues: we reconstruct and render large panoramas with looping
video content. An intermediate step in this direction is to embed
video elements within a static panorama [Pirk et al. 2012; Tomp-
kin et al. 2013]. Prior techniques for reconstructing fully looping
panoramas use as input a video stream from a camera that rotates
smoothly in a horizontal plane [Agarwala et al. 2005; Couture et al.
2011]. While this single continuous stream provides useful spatial
coherence, the approach does not scale in the vertical direction. As
with image panoramas, high-resolution content requires a more
general traversal of the 2D space of directions.

Recent papers [Hermans et al. 2008; Rav-Acha et al. 2007] support
more general types of videos and are not restricted to horizontal pan-
ning sequences. Rav-Acha et al. [2007] focus on the manipulation of
chronological events for continuous time fronts rather than generat-
ing loops. Hermans et al. [2008] require foreground/background seg-
mentation, and only retain repetitive dynamic elements on the back-
ground. �eir patch-based algorithm does not compute per-pixel
loops. All these methods are di�cult to generalize to large-scale
video panoramas. Perazzi et al. [2015] create large video panoramas
by aligning and merging content from unstructured camera arrays
with synchronously captured overlapping input videos. It should
be feasible to compute video loops on such content. However, the
approach involves a more expensive capture rig, consisting of 5
movie-grade cameras, for a panorama with at most 164M pixels.

Approach We capture a 2D grid of partially overlapping videos
using a single consumer camera a�xed to a motorized tripod mount,
and stitch these unsynchronized videos into a large-scale dynamic
panorama. A�er projectively aligning the videos, we globally op-
timize a video loop for the entire panoramic scene. As illustrated
in Fig. 2, this processing involves several stages including video
stabilization, vigne�ing correction, gain compensation, loop opti-
mization, and gradient-domain Poisson blending.

Contributions �e processing pipeline includes the following
main technical contributions:
• We propose what to our knowledge is the �rst practical method

to create gigapixel-sized looping panoramas. �e method is
able to achieve high-quality results at extremely high resolution,
while keeping a reasonable cost in memory and time.
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(a) Source video id (b) Looping period (c) Start frame

Fig. 1. We synthesize a large panoramic looping video by spatiotemporally stitching content from a 2D grid of overlapping source videos. The top row shows
one frame of the resulting panorama video loop, with highlighted close-ups in the middle row. A combinatorial optimization minimizes spatial seams and
temporal pops by selecting at each pixel the best source video, looping period, and start frame, as visualized in the three corresponding subfigures in the lower
row. The source video indices are visualized in (a) with di�erent colors, the looping periods are shown in (b) with increasing periods from blue to red, and the
start frames are shown in (c), where brighter colors indicate later frames. Pixels that are static are shown in white in (b) and (c).

• We present a loop optimization framework which optimally
retrieves and stitches content from overlapping unsynchronized
videos in the spatiotemporal domain to generate seamlessly
looping panoramic videos. �e approach also considers motion
consistency and dynamism preservation to improve the visual
quality.

• We develop a series of novel optimization strategies tailored
for our method to improve performance, including a k-coloring
technique that accelerates optimization by reducing the num-
ber of labels, and a parallelized out-of-core solver that builds a
content-adapted domain decomposition.

• We introduce an algorithm for interactively editing the video
panorama results using our tile-based viewer.

Overview We next present the successive stages of the process-
ing pipeline as illustrated by Fig. 2. Starting with the captured video

data (Sec. 2), several preprocessing steps are applied, including sta-
bilization and gain compensation (Sec. 3), followed by panorama
alignment and further color correction (Sec. 4). Our out-of-core
loop optimization then generates looping content for the entire
panorama (Sec. 5), and assembles it with gradient-domain Poisson
blending (Sec. 6). �e looping gigapixel video is diced into square
tiles, used by our e�cient gigapixel video renderer (Sec. 7). Finally,
we perform experiments and analysis on various challenging gi-
gapixel panorama cases to demonstrate the e�cacy and robustness
of our method (Sec. 8).

2 VIDEO CAPTURE
We use a GigaPan Pro robotic arm to automatically sweep through
a 2D grid, capturing spatially overlapping 8-second video segments
in column-major order. Spatially adjacent videos require at least a
20% overlap to allow accurate stitching and looping optimization.
�e GigaPan is designed to act as a remote shu�er trigger and
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Fig. 2. Stages of our processing pipeline for creating a gigapixel panorama video loop. The input consists of 240 partially overlapping 8-second video segments,
each at 25fps and 4K resolution. The output is a hierarchy of 8-second video tiles covering a gigapixel (58,699×20,407) panorama domain. First, we preprocess
the input videos to obtain a panorama video by correcting brightness temporally, aligning the videos, and harmonizing color spatially. Next, the panorama
video is downsampled for optimization. During optimization, it is partitioned into several regions for e�icient out-of-core processing. Each region is then
optimized individually. Screened Poisson blending removes spatial seams and temporal pops during postprocessing. The problem involves gathering sparse
gradient di�erences in the downsampled loop, solving a Poisson problem out-of-core, upsampling the resulting correction, and merging with the initial
high-resolution loop. Finally, the output loop is diced into regular video tiles at multiple scale levels for e�icient rendering.

automatically take images at each position. We disable the shu�er
trigger feature and instead capture a single rolling video of the entire
process. By con�guring the GigaPan to use a 13-second “exposure”,
we ensure that the camera remains for at least 13 seconds in each
position. We then extract 8 seconds of video within this 13-second
window for each position in the rolling video. In practice, we have
found that 8-second video segments su�ce to create our loopable
videos. However, these segments can be easily adjusted to shorter
or longer.

3 VIDEO SEGMENT PREPROCESSING
Video stabilization Although the captured video data is largely
stable, the large zoom factor occasionally leads to minor instability
in the presence of strong wind gusts, even with a robust, heavy-duty
tripod. �us, to form a seamless video loop, the input videos �rst
need to be stabilized. In our experiments, a simple stabilization
solution based on 2D a�ne transformation is su�cient to generate
visually stable results for most cases. Between each pair of adjacent
frames, we calculate optical �ow using the iterative Lucas-Kanade
method [Bouguet 2001] and estimate an optimal global a�ne trans-
formation for stabilization. Taking the start frame as the reference
frame, we calculate the relative camera motion transformation of
each frame by integrating all previous a�ne transformations. A�er
applying the transformations, frames may have missing data near
the boundaries. We address this by cropping the videos accordingly.
Since the overlap region between neighboring videos is large, all
video segments can still be aligned and assembled without any gaps.
Please refer to the accompanying video for a demonstration.
Temporal gain compensation All the video segments are cap-
tured using automatic exposure se�ings. Signi�cant changes in

brightness may occur due to metering, since the camera may need
time to adjust the exposure at each new position. Such variations
in brightness make it di�cult to generate a long looping result. To
address this issue, we include a temporal gain compensation step
to estimate a gain factor per color channel for every frame. Based
on our experiments, a simple solution that adjusts the brightness
of each frame to match the overall average pixel brightness of a
representative video frame (in our case, the average of the last 10
frames) can well address this problem. Fig. 3 shows the importance
of applying temporal gain compensation to achieve a temporally
stable result that can be used to generate loops.

4 PANORAMA ALIGNMENT AND COLOR CORRECTION
Median frame computation Once the video segments are sta-
bilized, the frames within each video segment should correspond
to the same camera pose. �e next goal is to determine the relative
alignment of the di�erent segments. For this alignment, we apply
techniques from panorama image stitching, �e main hurdle is to
identify a single representative frame from each video segment.
Ideally, we would like it to be a relatively stationary frame, with no
dynamic, moving objects which could hinder the alignment quality,
as shown in Fig. 4. To achieve this, for each segment, we compute
the median value of each pixel over all the frames, thus removing
the color value outliers caused by moving objects.
Alignment Given the representative median frames, we can ap-
ply an o�-the-shelf image panorama stitching technique to estimate
camera parameters for each video segment. �is technique is used
to align all the frames of our input videos into a gigapixel rectan-
gular grid. In our implementation, we used the camera parameters
estimated by Microso� Image Composite Editor [Microso� Research
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(a) video frames before temporal gain compensation

(b) video frames a�er temporal gain compensation

Fig. 3. Automated processing in the camera can cause temporal changes in brightness and white-balance within each input video. Enabling good video loops
requires compensating for these changes.

(a) stitching two arbitrary frames

(b) stitching two median frames

Fig. 4. When arbitrary frames are used for inter-video alignment (top row),
dynamic objects that are not present in both frames can hinder stitching
quality (second row). By instead using median frames (third row), such
troublesome objects are removed or blurred, thus avoiding potentially mis-
matched feature points and reducing the chances of stitching problems
(bo�om row).

2016]. Note that all the frames in each post-stabilized video segment
share the same camera parameters.
Devignetting and spatial color correction Spatial color cor-
rection is important to reduce artifacts at segment boundaries. Lens
vigne�ing causes a reduction of brightness at the periphery of each
segment. If uncorrected, this vigne�ing leads to an obvious repeti-
tive pa�ern in the stitched panorama, as evidenced in Fig. 5a. We

apply the method of [Goldman 2010] to address vigne�ing. A sepa-
rate concern is that videos captured at di�erent times with distinct
photometric se�ings may lead to obvious lighting di�erences, which
adversely e�ects stitching and loop generation. To create seamless
loops, the overall brightness should not change signi�cantly across
segments and frames, so harmonizing video brightness across neigh-
bors is also necessary. To address this issue, following the method
of [Brown and Lowe 2007], we compute spatial gain factors for R,
G, and B channels separately based on the median frames and apply
these to all the video segments. Fig. 5 shows the importance of
applying devigne�ing and color correction in order to achieve a
seamless result.

5 LOOPING OPTIMIZATION
Given the 2D grid of aligned overlapping videos, we select source
content at each panorama pixel to form a spatiotemporally consis-
tent video loop.

5.1 Basic optimization framework
We formulate our optimization algorithm following the basic frame-
work of Liao et al. [2013], which optimizes a loop given a single
input video.

Given an input video with colorV (x , ti ) within the range [0, 255]
per color channel at each 2D pixel x and input frame time ti , the
aim is to compute a video loop

L(x , t) = V (x ,ϕ(x , t)), 0 ≤ t < T , (1)

by determining a time-mapping function ϕ de�ned from unknown
start time sx and looping period px at each pixel as

ϕ(x , t) = sx + ((t − sx ) mod px ) (2)

Note that the looping content L(x , ·) at position x is always taken
from input video V (x , ·) at the same location (Fig. 6). Pixels in
nonloopable regions may be assigned with a �xed period px = 1, to
make them static by freezing their color to that in frame sx .

�e goal is to determine the set of periods p = {px } and start
frames s = {sx } that minimize the objective

E ′(s, p) = βspatialE
′
spatial(s, p) + E

′
temporal(s, p) + βstaticE

′
static(s, p),

(3)
where the constant weight βspatial balances the spatial and temporal
terms and the weight βstatic penalizes static pixels. (We set βspatial =
7 and βstatic = 200 as default.)
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Before Poisson blending A�er Poisson blending

(a) Without any correction

(b) With vigne�ing correction

(c) With both vigne�ing and color correction

Fig. 5. Alignment results with and without vigne�ing correction and spatial color correction are shown on the le� images. The images on the right show
the final results a�er Poisson blending (performed a�er loop optimization as described in Section 6). Note that devigne�ing, color correction, and Poisson
blending are all necessary to achieve a seamless result.
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Fig. 6. A video loop L is formed from an input video V by repeating some
temporal interval at each pixel x using a time-mapping function ϕ , specified
using a period px and start frame sx . The consistency objective is that for
any output pixel color (shown in solid red), its spatiotemporal neighbors
should have the same values as the corresponding neighbors in the input
[Liao et al. 2013].

�e �rst two terms E ′spatial and E ′temporal together measure the
spatiotemporal consistency of neighboring colors in the video loop
with respect to the input video [Agarwala et al. 2005]. Respectively,
E ′spatial integrates consistency over all spatially adjacent pixels (x , z):

E ′spatial(s, p) =
∑

‖x−z ‖=1
Ψspatial(x , z)γs (x , z) with (4)

Ψspatial(x , z) =
1
T

T−1∑
t=0

(
‖V (x ,ϕ(x , t)) −V (x ,ϕ(z, t))‖2 +
‖V (z,ϕ(x , t)) −V (z,ϕ(z, t))‖2

)
,

andE ′temporal integrates consistency across the two loop end frames sx
and sx + px at each pixel:

E ′temporal(s, p)=
∑
x

(
‖V (x , sx )−V (x , sx +px )‖2 +
‖V (x , sx −1)−V (x , sx +px −1)‖2

)
γt (x). (5)

Speci�cally, E ′temporal compares the loop start/end frames with the
frames immediately a�er/before the loop to measure consistency
across the transition point. �e modulation factors γs and γt a�en-
uate consistency in high-frequency regions similar to Kwatra et al.
[2003] and Bai et al. [2012], but are further supplemented with a
blend mask B(x) as in Liao et al. [2015]:

γs (x , z) = 1/(1 + λsMADti ‖V (x , ti ) −V (z, ti )‖)max(B(x),B(z))
γt (x) = 1/(1 + λtMADti ‖V (x , ti ) −V (x , ti + 1)‖)B(x),

(6)

where MAD is the temporal median absolute deviation of color
di�erence and B(x) = clamp(maxti (cbV (x , ti + 1) − V (x , ti )), 0, 1)
with the scaling factor cb = 0.006. (We set λs = 0.490 and λt = 1.634
in our results.)
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Finally, the static term E ′static is introduced to prevent a trivial
all-static solution:

E ′static(s, p) =
∑

x |px=1
MADti ‖V (x , ti ) −V (x , ti + 1)‖. (7)

Minimizing E ′ is a 2D Markov Random Field (MRF) problem, in
which each pixel is assigned a label (px , sx ) among the outer product
{p} ⊗ {s} of candidate periods and start frames. An approximate so-
lution can be found using an iterative multilabel graph cut algorithm
[Kolmogorov and Zabih 2004].

Liao et al. [2015] accelerate the optimization by masking out non-
loopable pixels from 2D graph cut, pruning graph-cut labels based
on dominant periods, and optimizing on a coarse grid while retain-
ing �ner detail. We also adopt these techniques which together
reduce computation times about two orders of magnitude. As illus-
trated in Fig. 2, we �rst compute a spatiotemporally downsampled
version of the input video using a 3D box �lter, with both temporal
and spatial scaling factors set to 4. For example, one input video
with resolution 3840 × 2160 × 200 is downscaled to 960 × 540 × 50.
Looping optimization will be performed only on the downsampled
video. During the post-processing step a�er optimization, we �rst
upsample the optimized label map to the input resolution by nearest
interpolation to reconstruct the initial loop L. To further remove
its spatiotemporal inconsistencies, we then generate the Poisson-
blended loop L′ using gradient-domain (Poisson) blending. Due to
the prohibitive computational cost of solving the large linear system
at the original resolution, we choose to perform Poisson blending
on the downsampled loop L̂, and upsample the Poisson-blending
di�erence L̂d = L̂′ − L̂ with a box �lter to get Ld at the original
resolution. Finally, Ld is added to the initial loop L to obtain the
blended loop L′.

5.2 Improvements to optimization framework
Focusing on our goal of panorama video looping, we further aug-
ment the basic optimization framework to overcome various chal-
lenging issues commonly seen in panorama videos. Speci�cally,
we propose to preserve consistent motion and encourage local dy-
namism to achieve vivacious yet consistent and natural results,
as re�ected in our new objective function, which consists of an
improved spatial consistency term Espatial, a new dynamism pre-
serving term Edynamic, and the aforementioned terms Etemporal =
E ′temporal,Estatic = E ′static:

E(s, p) = Etemporal(s, p) + βspatialEspatial(s, p)+
βdynamicEdynamic(s, p) + βstaticEstatic(s, p).

(8)

Next, we describe Espatial and Edynamic.

Motion consistency One drawback of prior work is that only
color consistency is considered in the spatial term. As demonstrated
in the red circle of Fig. 7b, noticeable artifacts o�en arise at the
boundaries between static and moving elements, which suggests
that motion consistency is also critical, especially for wide-angle
scenes. To address this issue, we consider motion consistency by
making use of the alpha (α ) color channel to store a measure of local

(a) motion magnitude V α (b) loop without V α (c) loop with V α

Fig. 7. We augment the input video with an additional channel V α that
measures motion, resulting in loops with be�er spatial consistency.

motion magnitude within the video:

V α (x , ti ) =

√√√√ ∑
c ∈{R,G,B }

(
V c (x , ti ) −

∑ti+n
t=ti−n V

c (x , t)
(2n + 1)

)2

. (9)

It uses the color di�erence between the pixel x at frame t and its
temporal neighborhood within a 2n+1 window around t (n = 2 in
our experiments). Including this component can greatly improve
spatial motion consistency. Motion magnitude is assigned with an
independent constant weight cmotion (we set cmotion = 2 for all our
results). �e term Espatial is now de�ned as:

Espatial(s, p)=
∑

‖x−z ‖=1
Ψspatial(x , z)γs (x , z)+cmotionΨmotion(x , z), (10)

with

Ψmotion(x , z) =
1
T

T−1∑
t=0

(
‖V α (x ,ϕ(x , t)) −V α (x ,ϕ(z, t))‖2 +
‖V α (z,ϕ(x , t)) −V α (z,ϕ(z, t))‖2

)
. (11)

A direct comparison with and without this motion consistency
term is shown in Fig. 7. �is term also helps the stitching seam
between multiple videos to go through regions with similar motion
consistency, as seen in Fig. 8c.
Dynamismpreservation When optimizing multiple videos with
overlapping content, we �nd that both temporal and spatial terms
tend to favor less dynamic content in overlapping regions across
videos that have unequal degrees of dynamism. To address this, we
introduce a novel dynamic energy term:

Edynamic = −
∑
x

px+sx−1∑
t=sx



V (x ,ϕ(x , t)) −V (x ,ϕ(x , t−1))


2
. (12)

�is term measures the variance of the video content within the
selected looping content, and further encourages looping content
with greater dynamism (higher variance). If the dynamism weight
βdynamic in Eq. (8) is low, dynamic regions tend to be frozen or
eliminated and the whole scene may lack vitality; whereas if it is
too high, some nonloopable motions may appear unnatural. Exper-
imentally, we suggest a value in [0, 0.3], depending on the input
content and user preference. If the input video is a large-scale scene
with only subtle motions (Fig. 14(top)), we set βdynamic = 0.3 to en-
courage more dynamism, while if too many chaotic moving objects
are present (Fig. 16(bo�om)), we decrease βdynamic to 0 to reduce
non-loopable behavior and improve temporal consistency.
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(a) overlapped videos (b) stitching result (c) our result

Fig. 8. Comparison of looping results when assigning video indices using
(b) panorama image stitching and using (c) our integrated optimization.

5.3 Generalization to multiple input videos
Our looping optimization extends the aforesaid single-input frame-
work to multiple overlapping input videos {Vi }. �e key to this
problem is to determine for any overlapped pixel x the index ix
of the corresponding video Vix from which this pixel is to be re-
trieved. �is is equivalent to �nding a series of stitching seams
corresponding to the discontinuities of this index map.

A naı̈ve approach to determine these seams would be to apply a
traditional panorama stitching method to those representative video
frames. However, this would be problematic due to the poor spatial
consistency of the subsequently chosen looping content, resulting
in obvious stitching artifacts (Fig. 8b).

�erefore, we instead propose to integrate this stitching step
directly into the combinatorial looping optimization, to obtain much
improved spatial consistency (Fig. 8c). Our solution is to include the
video index ix into the set of unknowns to be solved at each pixel.
�us, the loop de�nition becomes

L(x , t) = Vix (x ,ϕ(x , t)), 0 ≤ t < T . (13)

We then optimize the video indices i = {ix }, periods p = {px },
and start frames s = {sx } to minimize the energy with generalized
temporal consistency term Etemporal(i, s, p), spatial consistency term
Espatial(i, s, p), and dynamism preserving term Edynamic(i, s, p):

E(i, s, p) = Etemporal(i, s, p) + βspatialEspatial(i, s, p)+
βdynamicEdynamic(i, s, p) + βstaticEstatic(s, p).

(14)

To achieve good spatial consistency across video boundaries, the
loop should avoid undesirable spatial seams due to inconsistently
overlapping videos. For each pair of adjacent pixels x and z with
di�erent video indices ix and iz , our goal is to minimize this visual
inconsistency at both locations. Speci�cally, this is measured as
pixel di�erences ‖Vix (x , ·)−Viz (x , ·)‖ at x and ‖Vix (z, ·)−Viz (z, ·)‖ at
z respectively. Note that we avoid comparingVix (x , ·)withViz (z, ·)‖
directly to let each pixel’s neighbors look consistent as in the input
videos, instead of simply enforcing color similarity. �is way, the
spatial term Espatial adopts a modi�ed spatial color consistency
function Ψ∗spatial:

Ψ∗spatial(i,x , z) =

1
T

T−1∑
t=0

(

Vix (x ,ϕ(x , t)) −Viz (x ,ϕ(z, t))

2
+

Vix (z,ϕ(x , t)) −Viz (z,ϕ(z, t))

2

)
γκ (ix , iz ),

(15)

Fig. 9. The grid structure is such that no domain pixel is covered by more
than four input videos, so we remap video index labels to just four values
(here, colors labeled A, B, C, and D).

where the video source coherence factor γκ (ix , iz ) (κ = 2 for all our
results) is de�ned as:

γκ (ix , iz ) =
{

1 if ix = iz ,
κ if ix , iz ,

(16)

which gives greater importance to spatial consistency at the stitch-
ing boundaries between di�erent source videos, based on the obser-
vation that these inter-video boundaries are much more likely to
have visible artifacts than intra-video seams due to scene motion
and the larger time di�erence in the acquired content. Intuitively,
we encourage these boundaries to go through regions that are more
compatible.

Both the temporal term Etemporal and the dynamic term Edynamic
can be adapted from Eq. (5) and Eq. (12) respectively, by using Vix
in place of V . If a particular video index ix is invalid for a pixel x
because the pixel lies outside the video extent, we set the spatial and
temporal terms to in�nity to prevent the index from being selected.
Graph-coloring acceleration We minimize the objective func-
tion Eq. (14) using a multilabel graph cut, in which the set of pixel
labels {(i,p, s)} is the outer product of candidate input video in-
dices {i}, periods {p}, and start frames {s}. �us the number of
candidates is

|{(i,p, s)}| ∝ |{i}| × |{p}| × |{s}|. (17)

Compared to the single-video case, the introduction of video indices
signi�cantly increases the number of candidate labels. �is is a
concern due to the linear relationship between optimization time
and the number of labels.

We assume video segments are on a 2D grid with less than 50%
overlapping areas between arbitrary adjacent segments, so that
each pixel will be covered by no more than four video segments.
According to this layout pa�ern of the input videos, we can reuse
the video indices for di�erent sets of non-overlapping videos. �e
number of index labels cannot exceed the maximum number of
videos that overlap at a given region. Due to our regular-grid video
pa�ern, we are able to reduce the labels to just 4 as shown in Fig. 9.

We apply a similar strategy to prune the number of candidate
periods. �e optimization allows pixels to have any looping period
but it is too costly if all periods {p} and all possible start frames
{s} for each period are considered. For one single 4× temporally
downsampled 8-second input video (i.e., 50 frames) and a minimum
loop period of 8 frames, this results in a multilabel graph cut with
953 labels (s = 0, 1, ...49|p = 1; s = 0, 1, ...42|p = 8; s = 0, 1, ...41|p =
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(a) loopable mask (b) dynamism map (c) overlap map

(d) importance map (e) domain partition

Fig. 10. The content-adapted domain partition places boundaries near pixels
that are either nonloopable or have low dynamism.

9; ...; s = 0|p = 50). To reduce the number of labels for the single-
video se�ing, Liao et al. [2015] �nd that two dominant periods are
usually su�cient to generate a good looping result. With multiple
videos, our experiments suggest that it is su�cient to restrict the
candidate periods at any pixel to be the union of all dominant pe-
riods from the 3×3 nearest input videos (one video and its eight
neighbors). �us, similar to 4-coloring for video indices, we use a
9-coloring pa�ern to reuse period labels. Here each color represents
two dominant periods. �us with the addition of a static period
label (period p = 1), the optimization needs only consider at most
19 candidate period labels.

With these two graph-coloring accelerations, the upper bound of
candidate labels becomes

|{(i,p, s)}| ∝ 4 × 19 × |{s}| , (18)

which is independent of the number of input videos.
For inputs with other video layouts where more than 50% adjacent

video overlap may occur, we can no longer apply this graph-coloring
scheme to reduce the number of labels. But this problem can be
simply bypassed by performing video cropping to enforce proper
overlapping ratio. Our method can also potentially be extended to
arbitrarily positioned tiles that do not lie on a 2D grid. In that case,
a more general coloring strategy must be employed to assign the
index labels avoiding repetition among neighbors. As a result, the
optimization may involve a larger number of index labels and thus
be potentially more expensive.
Out-of-core loop optimization Due to the large amount of
data required for a gigapixel video, we solve the loop optimization
out-of-core. Although many implementations of distributed graph
cuts (e.g., Strandmark and Kahl [2010], Liu and Sun [2010]) have
been proposed, their constraints on optimization and memory pre-
vent us from applying them directly to our situation. We design
a scalable algorithm by spatially partitioning the panorama into
multiple regions that are as independent as possible and solve each
region separately. �e pixels from adjacent already-solved regions
serve as boundary conditions when solving a region. We parallelize
the computation of non-adjacent regions on separate machines.

Although the region boundary constraints provide spatial consis-
tency, these can hinder the quality of the solution. In particular, the
order of optimized regions a�ects the �nal result. To mitigate this
order dependence, ideally we would like the partition boundaries
to pass through pixels which are masked out of the optimization.
Liao et al. [2015] compute a binary loopable classi�cation mask
which excludes pixels that are either static or cannot possibly form

a good loop. We let our loopable mask loopable(x) be the union
of the loopable masks of all video segments (Fig. 10a). Note that
a perfect partition through non-loopable pixels may not exist. If
a partition boundary must pass through loopable pixels, we seek
to minimize the amount of dynamism along that boundary. �is
is because pixels that exhibit li�le dynamism can usually have any
potential artifacts addressed by Poisson blending. We de�ne the
dynamism of each pixel as dynamic(x) = maxi,t



V αi (x , t)

, as vi-
sualized in Fig. 10b. In the multi-video case, another factor that
must be considered is the overlap. �e partition cannot avoid going
through the overlap region but we prefer it to pass overlapping pix-
els that are similar among all video sources, since for those pixels the
video ID selection is not critical. We de�ne an overlap function as
overlap(x) = maxi, j,t



Vi (x , t) −Vj (x , t)

, as visualized in (Fig. 10c).
Jointly considering these three factors (loopable, dynamism and
overlap), the importance of each pixel is de�ned as

impor(x) = (loopable(x) ∗ dynamic(x)) + overlap(x), (19)

where loopable(x) is Boolean function (implicitly converted to 0 or
1) while dynamic(x) and overlap(x) are normalized between 0 and
1. �e importance map is shown in Fig. 10d.

�e partition can be seen as a weighted, 4-connected graph parti-
tion problem. Given a desired number k of regions, the optimized
partition P = P1, P2, ....Pk minimizes the sum of edge cut costs

d(x , z) = min(impor(x), impor(z)) (20)

over all adjacent pixels x , z mapped to di�erent partition regions.
To make the regions roughly uniform in size, we add a constraint

on the area A(Pi ) of each region:

max
i
(A(Pi )/Ā) ≤ 1 + ϵ . (21)

�e positive constant ϵ sets a tolerance on the size di�erence com-
pared to the target size Ā =

∑k
i=1 A(Pi )/k . Empirically we let ϵ be

25% and set the number k of regions to the smallest value such that
the largest part Ā × (1 + ϵ) still satis�es the memory limits.

We leverage a multi-constraint mesh partitioning method [Karypis
2003] to obtain the optimized domain partition (Fig. 10e). Since the
optimal partition tries to avoid dynamically loopable pixels, the
order of regions to be optimized has a very small in�uence on the
�nal result. Once partitioning is complete, we optimize regions
in random order. When optimizing each region, boundary pixels
of neighboring regions that have already been processed serve as
boundary constraints. We �nd that the di�erence in results by using
di�erent orders is small. Fig. 11 demonstrates the bene�t of using
this optimized partition. �us, it is feasible to parallelize regions
without common boundaries.

6 LOOP ASSEMBLY
Having solved for the video source and looping parameters for each
output pixel, we can begin to assemble the looping content into a
panorama. Given a �xed output length, the output loop can adjust
each looping period to the nearest integer number of loop instances
[Liao et al. 2015]. We �rst upsample the optimized looping periods
and start frames by the temporal scaling factor, and assemble an
initial loop from the 4× spatially downsampled input videos of orig-
inal length. Next, as in the previous paper, it is important to apply
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(a) no partition

(b) content-adapted partition

(c) naive partition

Fig. 11. Out-of-core loop optimization achieves be�er results when the
partition adapts to the content of the input video.

gradient-domain blending to further remove spatial seams and tem-
poral pops. For the initial spatially downsampled loop, we solve a
multigrid 3D screened Poisson problem to di�use its spatiotemporal
gradient inconsistencies. �e resulting correction is upsampled by
bilinear interpolation and added to the initial high-resolution loop.
In the vicinity of inter-video spatial seams, a conjugate gradient
solver is used to reduce blocky artifacts caused by upsampling. �is
signi�cantly improves results near video segment boundaries, as
shown in the right column of Fig. 5.
Out-of-core gradient blending Even though the Poisson blend-
ing is evaluated at the coarser level, memory may still become a
bo�leneck in the gigapixel scenario. Once again, we partition the
spatial domain of the panorama, but in this case the position of
boundaries is unimportant. We uniformly partition the panorama
into rectangular regions that �t in memory, and perform Poisson
blending over the regions in raster order. Similar to Summa et al.
[2011], the results of previously solved neighboring regions serve
as Dirichlet boundary condition for the subsequent regions. To
validate the e�ectiveness of the partitioning, Fig. 12 compares the
Poisson blending results with and without the use of domain par-
tition for an example that can be solved entirely in memory. �e
di�erences are small, with no visible artifacts.

7 RENDERING
We design a renderer for users to interactively navigate through our
gigapixel videos. �e renderer seamlessly replays the region of the

(a) no blending (b) blending without partitioning

(c) blending with 2×2 partition (d) di�erence

Fig. 12. Comparison of screened Poisson blending evaluated in-memory
and out-of-core.

Level 0

Level 1

Level 2

Level 3

N

N‘

M

Fig. 13. Hierarchical tiling structure and priority computation. The arrows
depict the distance used for priority computation in level-of-detail (z) and
spatially (x, y) between the viewport centered at N and a tile M .

looping gigapixel video that overlaps with the current viewport. We
dice the gigapixel video into a set of square video tiles in a 2D grid
structure at multiple levels of detail (six in our results). As in image
mipmapping, we use trilinear interpolation to render the current
view. �e approach is akin to multiresolution image viewers (e.g.,
Kopf et al. [2007]), but with looping video tiles instead of image tiles.
�e user can interactively navigate and zoom using the mouse.
Tile preloading strategy As with large image viewers, the video
tiles are stored on disk and loaded (possibly over a network) into
memory based on a priority schedule.

To make the best use of computing resources, we asynchronously
load/discard tiles during navigation, always maintaining the ones
with highest priority in memory. As a fallback case, we preload
and use static images if the required video tiles are not loaded and
available.

For a given current viewpoint Nxy and mipmap level Nz , the
priority of the video tile located at Mxy and in mipmap level Mz is
inversely proportional to its spatial distance and LOD distance to
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N , and given by:

P(M,N ) = 1
|Mz − N ′z |1 + λ |Mxy − N ′xy |1

, (22)

where N ′ is the projection of N onto the mipmap level Mz . Note
that in our mipmap system, we set the distance between adjacent
tiles within the same level to 1 and set the distance between mipmap
levels i and i + 1 to 2i . �e parameter λ = 1.5, which tunes the rela-
tive importance between spatial and level distances, is determined
empirically. Refer to the black line in Fig. 13 for an illustration of
the priority computation.

With typical user interactions, we easily achieve frame rates
above the 25fps rate of our video tiles. Please refer to our accompa-
nying video for a demonstration.

8 RESULTS
Examples Our system is robust to a variety of challenging input
panoramic scenes. In this paper, we demonstrate a few representa-
tive examples, including three gigapixel video panoramas to present
the scalability of our algorithm: seafront (Fig. 1), cityscape at night
(Fig. 14(top)), and park (Fig. 14(bo�om)); and four smaller but chal-
lenging panoramas to validate our combinatorial optimization: foun-
tain (Fig. 15(top)), rocks with challenging water motions (Fig. 14(bot-
tom)), commencement (Fig. 16(top)) with many dynamic objects, and
square (Fig. 16(bo�om)) with a large crowd of pedestrians. For each
example �gure, the top row shows the entire panorama along with
close-ups of areas with interesting activity. �e bo�om row shows
the color-coded source video selection, the looping period, and the
start frame for each panorama pixel.

�e three gigapixel panoramas (seafront, cityscape and park) are
sequentially captured in long time periods, which results in obvious
inconsistent lighting conditions across the video grids, especially
for park where the weather changes dramatically. �is introduces
a signi�cant challenge to harmonize these videos. Our pre- and
post-processing stages, our color correction, and Poisson gradient
blending methods work well on achieving smooth and consistent
transition. In commencement and square, the large number of in-
dividual dynamic objects make it extremely di�cult to generate
ideal loops. Our algorithm tries to remove those nonloopable ob-
jects while still preserving natural loops of more subtle motions.
We also allow the user to locally edit the panorama to handle chal-
lenging regions (as described in Section 9). In commencement, the
Seam operation is used in two regions to enforce spatial consistency.
And in square, the Freeze operation is used in only one region to
remove nonloopable motions. All types of editing operations are
demonstrated in the accompanying video.
Performance Analysis All these examples use 8-second input
video segments at 4K resolution and 25fps frame-rate. �eir perfor-
mance statistics are summarized in Table 1. Note that the input to
each of the three gigapixel panoramas consists of over 180 video seg-
ments taken from approximately one hour of total captured video.
To process the panoramas e�ciently and without thrashing, we
partition the gigapixel panorama domain into at most 20 regions.
To further boost the performance, all our results are generated in
parallel on a simple cluster with 4 nodes, each with 4-6 cores and
24-80GB RAM.

All gigapixel examples can be captured and processed in about 20
hours, while all other smaller examples take no more than 6 hours, as
reported in Table 1. Please note that a considerable amount of time
is spent on optimization, especially for the gigapixel panoramas due
to expensive graph cut solver. Most of the stages can be naturally
fully parallelized in clusters, and our out-of-core strategy manages
to parallelize nonadjacent parts and decrease the processing time
by approximately half.

As for memory consumption, we notice that maximum in-use
memory peaks at approximately 20GB. In particular, loop optimiza-
tion is the most memory-intensive stage. For instance, the seafront
panorama of 1197M pixels is partitioned into 20 regions with 60M
pixels per region on average. �e imbalance between the largest
and smallest region is no more than 25%. On average, the graph
cut processing on each region requires 14GB to store the source
input video, and an additional 2.5GB for the optimization solver
itself. �us the source video data (used to evaluate the objective
functional) dominates memory usage, and its size depends linearly
on the region extent. �anks to this linearity, our out-of-core pro-
cessing strategy lets us adaptively determine the region size and
thus preciously limit the memory requirements.
Rendering �e results are best explored using the gigapixel
renderer. �e diced output tiles are 200 frames long and have a
spatial resolution of 1024 × 1024. �e accompanying video shows
real-time navigation sessions of these panoramas at the 25fps native
framerate of the input video data as well as closeup comparisons of
the input videos and the resulting panoramas.

9 EXTENSION: SPATIALLY-SELECTIVE EDITING
Our system is able to automatically produce spatiotemporally con-
sistent video loops. However, there may still exist regions where
users would like to modify or adjust. One problem is that our opti-
mization inherits the limitation of Liao et al. [2013] that the semantic
relationship between objects might be inaccurate. When the fore-
ground object has similar color and motion as the background, it
might be di�cult to preserve spatial continuity. For instance, a
person can be split in the middle (Fig. 17(top)a). Another problem is
that some nonloopable motions may be kept due to our dynamism
preservation constraints. Imagine a scene with a person walking
through. Our loop optimization may freeze the person, remove the
person altogether, or even produce an unnatural loop where this
person appears, walks along, and then disappears (Fig. 17(bo�om)a).
For these challenging cases, the best outcome that can be obtained
is highly subjective, depending on whether the user is willing to sac-
ri�ce the continuous looping behavior in favor of a more dynamic
scene.

We adapt our optimization framework to support interactive local
adjustment over spatial consistency and dynamism on the gigapixel
result. Our system provides an interface for the user to intuitively
select a local region over the automatic result Lp and perform quick
local update with new parameters to get Ls . To smoothly blend the
local region of Ls onto Lp , we �nd an optimal seam between Lp
and Ls and perform Poisson gradient blending across it. Given the
user’s selection mask at one key frame (Fig. 17b), we apply a robust
object tracking method [Henriques et al. 2015] to continuously track
the mask across the entire sequence and generate a conservative
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(a) Source video id (b) Looping period (c) Start frame

(a) Source video id (b) Looping period (c) Start frame

Fig. 14. Visualization of the cityscape (top), and park (bo�om) panoramas.
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Table 1. Data and processing statistics for our looping panoramas.

panorama information processing times (minutes)

name input segments regions viewer tiles # edited regions resolution capture preproc† align† optimize† assemble & dice†

seafront 12 × 20 20 1559 0 1197MP 62 67 63 774 301
cityscape 10 × 26 20 1414 0 1051MP 68 71 52 661 287
park 11 × 17 15 1148 0 840MP 47 51 43 542 241
fountain 3 × 6 4* 116 0 82MP 6 4 6 40 15
commencement 5 × 7 4 138 2 94MP 9 8 10 65 29
rocks 5 × 14 5 311 0 219MP 17 16 15 195 67
square 8 × 8 5 383 1 259MP 15 15 14 242 70
* �e fountain panorama could have been processed in memory. It is only partitioned to allow for parallelization.
† Parallelized over four computers.

(a) Source video id (b) Looping period (c) Start frame

(a) Source video id (b) Looping period (c) Start frame

Fig. 15. Visualization of the fountain (top) and rocks (bo�om) panoramas.

rectangle with the union mask M (Fig. 17c) bounding the target
object. �e video content inside the rectangle is then re-optimized
according to user’s choice among the three possible operations:
Seam, Freeze and Erase. Seam is used to repair a broken object by
locally increasing the parameter β in Eq. (8). Freeze can remove the
object’s motion within the selected region and set px = 1. Erase
is implemented by decreasing βdynamic to 0 in Eq. (8) to remove
nonloopable objects. Fig. 17 shows the e�ect of these operations.
To blend Ls into Lp , we �rst generate a conservative di�erence map
D (Fig. 17d) inside this local region, with each pixel value D(x) set

to the largest color di�erence across all frames. �is captures the
entire motion of the object. Formally,

D(x) = max
0≤t<T

‖Lp (x , t) − Ls (x , t)‖ . (23)

With this di�erence map D and the union object mask M , we apply
graph cut to generate the blending seam (Fig. 17e), which is then
used by Poisson gradient blending to get the �nal result (Fig. 17f).
Once user editing is �nalized, all the mipmap tiles a�ected by this
modi�cation are then updated. Please refer to the accompanying
video for a demonstration.
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(a) Source video id (b) Looping period (c) Start frame

(a) Source video id (b) Looping period (c) Start frame

Fig. 16. Visualization of the commencement (top) and square (bo�om) panoramas a�er editing.
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(a) (b) (c) (d) (e) (f)

(a) (b) (c)

(d) (e) (f)

(a) (b)

(c) (d)

(e) (f)

Fig. 17. Local editing examples, Seam (top), Freeze (middle) and Erase (bot-
tom) with (a) for Lp , (b) for user’s stroke, (c) for M , (d) for D , (e) for initial
result and (f) for final result a�er Poisson gradient blending

10 DISCUSSION AND FUTURE WORK
We demonstrate a novel method to create high-resolution looping
panoramic videos. �e approach is to acquire a grid of spatially
overlapping short videos and combine these into a single spatiotem-
porally consistent loop. Our pipeline includes an improved single-
video looping optimization framework, a multi-input generalization
for handling overlapping videos over a gigapixel domain with sev-
eral acceleration strategies, and several pre- and post-processing
steps required to achieve seamless results. �e key contributing fac-
tor enabling the successful results is the formulation of a common
combinatorial optimization for both stitching and looping.

While the technique works well for nature scenes which exhibit
looping behavior, it cannot produce satisfactory results in some
cases. Firstly, it may produce undesirable e�ects (e.g. a person
disappearing behind a tree without re-appearing) in regions where
there are nonloopable objects. To help mitigate this problem, we
develop an interface for the user to perform local region editing with

Fig. 18. Visible seam (highlighted in red) caused by waves(top) and
leaves(bo�om) which are relatively large relative to the segment sizes of
this closeup panorama.

various operations. In future work, an automatic solution to detect
and correct such regions without user assistance would be ideal. Sec-
ondly, visual discontinuities may arise when motions vary greatly
at the overlapping regions (Fig. 18). A be�er stitching method may
help improve spatial consistency in these challenging cases. �irdly,
the current system is constrained to similar depth-of-�eld across
all input videos. Exploring ways to perform focus bracketing and
merging the results during a preprocessing step could further im-
prove the focus range of our resulting video panoramas. Finally, the
current system is designed for input videos in a 2D grid layout, i.e,
graph-coloring acceleration can only handle video segments with
less than 50% mutual overlap. �is could be extended to support
inputs with more general layouts.

It would be interesting to explore the generalization to stereo
panoramas as in [Couture et al. 2012]. �e added challenge of
maintaining temporal synchronization between the le� and right
views in each frame would link the choice of looping parameters for
the two views. Existing methods for annotating static panoramas
[Luan et al. 2008] or identifying their salient areas automatically
[Ip and Varshney 2011] might be extended to operate on looping
panoramas.
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