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(a) Surface 𝑀1 with edges from 𝑀2  

(notice density of edges from left wing) 
(b) Surface 𝑀2 with edges from 𝑀1  
(see spike flattened on rear left knee) 

(c) 𝑀1 normals mapped onto 𝑀2  
(lit using 2 antipodal light sources) 

(d) 50% morph 

Figure 1: Inter-surface map for two objects of genus 2, initialized with 8 user-specified feature points. (Symmetric stretch efficiency 0.311).

Abstract 
We consider the problem of creating a map between two arbitrary 
triangle meshes.  Whereas previous approaches compose para-
metrizations over a simpler intermediate domain, we directly 
create and optimize a continuous map between the meshes.  Map 
distortion is measured with a new symmetric metric, and is 
minimized during interleaved coarse-to-fine refinement of both 
meshes.  By explicitly favoring low inter-surface distortion, we 
obtain maps that naturally align corresponding shape elements.  
Typically, the user need only specify a handful of feature corre-
spondences for initial registration, and even these constraints can 
be removed during optimization.  Our method robustly satisfies 
hard constraints if desired.  Inter-surface mapping is shown using 
geometric and attribute morphs.  Our general framework can also 
be applied to parametrize surfaces onto simplicial domains, such 
as coarse meshes (for semi-regular remeshing), and octahedron 
and toroidal domains (for geometry image remeshing).  In these 
settings, we obtain better parametrizations than with previous 
specialized techniques, thanks to our fine-grain optimization. 
Keywords: surface parametrization, shape morphing, remeshing. 

1. Introduction 
Surface parametrization refers to mapping a triangle mesh onto a 
simpler domain such as the plane, the sphere, or a coarse simpli-
cial domain.  The parametrization is represented by a map 𝜙𝐷→𝑀 
where 𝑀 is the mesh and 𝐷 is the simpler domain.  In computer 
graphics, parametrization is central to texture mapping, whereby 
images placed in the domain are sampled on rendered surfaces to 
provide texture detail, place decals, encode shadows, record 
radiance transfer coefficients, etc.  Surface parametrizations also 
appear in numerous applications, including digital geometry 
processing, morphing, surface editing, object recognition, and 
geometry remeshing. 
We address the more general problem of directly constructing a 
continuous bijective map 𝜙𝑀1→𝑀2  between two triangle meshes 

𝑀1 and 𝑀2 of the same topology.  (Continuity precludes maps 
between surfaces with different genus or number of boundaries.)  
Unlike previous approaches which compose parametrizations of 
𝑀1 and 𝑀2 over some intermediate domain (as reviewed in 
Section 2), we directly optimize the quality of the overall map 
𝜙𝑀1→𝑀2.  Our method works for arbitrary genus and does not 
require the user to provide a simplicial complex (e.g. [Praun et al 
2001]).  The user may optionally specify corresponding feature 
points on 𝑀1 and 𝑀2, and our construction guarantees that the 
map satisfies these constraints. 
Some parametrization schemes may require a large set of manual-
ly specified features to guide the parametrization process to a 
good (or even valid) solution.  As we shall show, our mapping 
method is robust even with few feature constraints.  Moreover, 
directly minimizing the distortion of the inter-surface map tends 
to naturally align corresponding shape elements.  Of course, a few 
user-specified constraints are helpful for overall registration and 
for linking semantically related regions. 
Our approach adds a new fundamental tool to the Digital Geome-
try Processing toolbox.  Its main contributions are: 
• Inter-surface mapping without any intermediate domain, to 

directly measure the distortion of the overall map. 
• Symmetric distortion metric, i.e. invariant to the interchange of 
𝑀1 and 𝑀2. 

• Symmetric coarse-to-fine optimization algorithm to provide 
robustness and convergence to a good solution. 

• Initialization of map to robustly satisfy any user-specified 
feature correspondences. 

Additional scenarios.  While our motivating application is the 
creation of maps between surfaces of comparable complexity, our 
framework can also be used in cases where 𝑀1 is a simpler mesh, 
possibly inferred from 𝑀2: 
• Simplicial parametrization (for semi-regular remeshing): given 

a surface 𝑀2 and desired domain vertices on 𝑀2, we automati-
cally create domain 𝑀1 and a parametrization. 

• Octahedral parametrization (for geometry-image remeshing): 
𝑀1 is a regular octahedron, and feature points are unnecessary. 

• Toroidal parametrization (for remeshing of genus-1 shapes). 
Our more general optimization framework actually obtains better 
results than the previous techniques specialized to these scenarios. 
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2. Related work 
Planar parametrization.  The traditional surface parametrization 
problem considers the case where the domain 𝐷 is a planar region 
𝑃 ⊂ ℝ2 (see survey in [Floater and Hormann 2003]).  The map 
𝜙𝐷→𝑀 is represented by the parametric locations of vertices of 𝑀 
within the plane.  Optimization can freely move the vertices 
within the domain as long as bijectivity is maintained. 
Kraevoy et al [2003] present the Matchmaker scheme for satisfy-
ing corresponding feature point constraints in 𝐷 and 𝑀.  We 
extend their scheme to form a corresponding graph of paths on 
two surfaces 𝑀1,𝑀2 of arbitrary genus 𝑔, possibly with bounda-
ries. To guarantee the successful termination of the path insertion 
process, we impose ordering constraints on the neighbors of a 
feature vertex, and we trace a spanning tree and 2𝑔 non-
separating cycles before completing the full graph.  
Consistent neighbor ordering is necessary to avoid 
partial graphs that are impossible to complete, as 
shown on the right (if 𝐷 and 𝐸 link to the same 
base vertex 𝐵 or 𝐶, this will result in flipped trian-
gles; if they link to different ones, edges will cross.) 
An important limitation of planar parametrization is that repre-
senting an entire surface requires that it be cut into one or more 
disk-like charts, where each chart is parametrized independently.  
Some techniques cut the surface into a single chart [e.g. Gu et al 
2002; Sheffer et al 2002; Sorkine et al 2002], while others cut it 
into an atlas of charts [e.g. Maillot et al 1993; Sander et al 2001; 
Levy et al 2002; Gu and Yau 2003].  In either case, the cuts break 
the continuity of the parametrization, making it difficult to use a 
planar parametrization approach to construct a continuous map 
between two different surfaces, since their cut structures differ. 
Spherical parametrization.  By letting the surface domain 𝐷 be 
the unit sphere 𝑆,  one can directly parametrize a closed genus-
zero surface without any cuts.  Examples of spherical parametri-
zation methods include [Haker et al 2000; Alexa 2002; Gotsman 
et al 2003; Praun and Hoppe 2003]. 
Simplicial parametrization.  Another approach lets the domain 
𝐷 be a coarse base mesh.  The surface is partitioned into triangu-
lar regions that are mapped respectively to faces of 𝐷 [e.g. Eck et 
al 1995; Lee et al 1998; Guskov et al 2000; Praun et al 2001]. 
The challenge in simplicial parametrization is that it is difficult to 
globally optimize the parametrization.  Whereas planar and 
spherical domains are smooth everywhere, simplicial domains 
have sharp edges and vertices.  Since the whole domain cannot be 
simultaneously “unfolded”, most methods iteratively apply a 
linear relaxation to a small group of adjacent faces.  For example, 
Eck et al [1995] iteratively unfold a pair of adjacent domain faces 
and reparametrize the surface neighborhood over the resulting 
quadrilateral. Guskov et al [2000] perform local reparametriza-
tions over 1-ring vertex neighborhoods, with the advantage that 
the images of domain vertices can shift over the surface. 
Rather than iteratively optimizing local neighborhoods, Khoda-
kovsky et al [2003] set up a global system where the mesh edges 
spanning adjacent domain faces are treated as if the two faces 
were locally unfolded into a plane.  Solving the global system 
provides much faster convergence.  Unfortunately, the domain 
vertices are fixed during the global system, and must be relaxed 
separately using traditional 1-ring  relaxation. 
The inter-surface mapping problem could be viewed as an in-
stance of simplicial parametrization where the domain 𝐷 = 𝑀1 is 
an unusually complicated simplicial domain.  However, existing 
simplicial parametrization techniques are not applicable, because: 
(1) They require an initial correspondence from all vertices of 𝑀1 
to surface 𝑀2, obtained by the construction of 𝑀1 from 𝑀2. 

(2) Even with this initial correspondence, the techniques would 
converge too slowly due to the high complexity of 𝑀1. 
(3) Simplicial parametrization techniques ignore the geometry of 
surface 𝑀1, since they assume it to be an abstract domain. 
Inter-surface mapping.  Lee et al [1999] create an inter-surface 
map between two surfaces 𝑀1,𝑀2 by first constructing simplicial 
parametrizations 𝜙𝐷1→𝑀1 ,𝜙𝐷2→𝑀2 .  Because the domain meshes 
𝐷1,𝐷2 are different, user assistance is required to form a good 
map between them, and this map construction is not robust. 
To overcome this drawback, Praun et al [2001] develop a simpli-
cial parametrization method in which the connectivity of the 
simplicial complex 𝐷 can be specified a priori.  Given a genus-0 
simplicial complex and desired images of each domain vertex on 
multiple surfaces, they construct consistent parametrizations 
𝜙𝐷→𝑀1 ,𝜙𝐷→𝑀2  over the shared simplicial domain 𝐷. 
Both spherical parametrization and consistent simplicial para-
metrization can be used to create a continuous map between two 
surfaces 𝑀1 and 𝑀2 by forming the composition 𝜙𝐷→𝑀2 ∘ 𝜙𝐷→𝑀1

−1  
(where 𝐷 is the sphere or simplicial domain, respectively).  
However, using an intermediary domain may result in a poor 
inter-surface map, since each sub-map ignores the non-uniform 
distortion present in the other.  For example, when creating a map 
between a cow and a horse, the cow legs would not be encouraged 
to match up with the horse legs.  While it is possible to manually 
force correspondences of constraints on a dense set of domain 
vertices, a more elegant and flexible solution is to automatically 
favor this correspondence within the distortion metric itself. 
Kraevoy and Sheffer [2004] use the composition 𝜙𝐷→𝑀2 ∘ 𝜙𝐷→𝑀1

−1  
to remesh 𝑀2 using the connectivity of 𝑀1 (together with addi-
tional vertices).  They smooth the map using a spring relaxation 
with edge weights related to local remesh error.  Their approach is 
much faster than ours, and produces simpler meshes than our 
method run to full resolution.  However, our coarse-to-fine com-
putation can be stopped at any lower resolution, or the final map 
could be post-simplified considering both mesh geometries.  Since 
their map uses a conformal metric (as in Figures 5, 9, 10), the user 
must associate all interesting model features.  Their scheme is 
robust for genus-zero models; although they demonstrate maps 
between models of nonzero genus, their algorithm may abort and 
ask the user for additional feature constraints. 
In this paper, we directly optimize the distortion of the inter-
surface map, and robustly support surfaces of arbitrary genus. 

3. Approach overview 
Map representation. Our goal is to produce a piecewise-linear 
map between two triangulated surfaces.  Unlike in planar para-
metrization, the linear pieces of the map are finer than the original 
mesh faces, as they correspond to triangles of a mutual tessella-
tion [Turk 1992] (a.k.a. meta-mesh [Lee et al 1999]) of the two 
surfaces. Vertices of this meta-mesh include the vertices of both 
initial meshes as well as vertices formed by edges of 𝑀1 intersect-
ing those of 𝑀2.  To fully specify the map, for each mesh vertex 
we record the face of the other mesh to which it maps, along with 
barycentric coordinates within that face, and for each edge-edge 
intersection, we record the two ratios formed by the split point on 
each edge. Together, the vertex and edge-edge barycentric coordi-
nates define a set of polygonal sub-regions on faces of 𝑀1 and 
𝑀2. We define a unique piecewise-linear map by further triangu-
lating these polygonal regions. 
On rare occasions, it is necessary to “bend” the image of an edge 
of 𝑀1 inside a triangle of 𝑀2 and vice-versa. We achieve this by 
introducing special kink vertices of valence 2 in mesh 𝑀𝑖 (Sec-
tion 5). These vertices have a corresponding face and barycentric 
coordinates in the other mesh just like regular vertices. 



 

 

Algorithm overview.  Our strategy is to use progressive refine-
ment to robustly create and optimize the inter-surface map.  Even 
for planar and spherical parametrizations, which involve smooth 
domains, coarse-to-fine approaches help parametrizations con-
verge to good solutions [Hormann et al 1999b; Sander et al 2002; 
Aksoylu et al 2003].  For inter-surface maps, the lack of domain 
smoothness exacerbates the problem of local minima, further 
motivating progressive refinement. 
Our method first constructs progressive mesh (PM) representa-
tions of both 𝑀1 and 𝑀2 [Hoppe 1996].  To simplify the task of 
initializing the inter-surface map (and in fact make this task 
trivial), we constrain the two progressive meshes to have base 
meshes with identical connectivities.  And, to satisfy user-
specified correspondences, feature points are retained as vertices 
in the base meshes.  Consequently the algorithm becomes prova-
bly robust.  A trivial valid map is created initially, and the 
refinement operations always succeed, so that by induction we are 
guaranteed a valid map between the fully refined surfaces. 
The basic steps of our algorithm are: 
(1) Partition the surfaces 𝑀1 and 𝑀2 into a corresponding set of 

triangular patches, by tracing a set of corresponding paths.  If 
user-specified features are provided, these are chosen as path 
endpoints.  (Section 4) 

(2) Create progressive mesh representations of both 𝑀1 and 𝑀2, 
using the path networks to constrain the simplifications, result-
ing in two base meshes with identical connectivities. 

(3) Establish a trivial map between the two base meshes: a 1-to-1 
map on vertices, with no edge-to-edge intersections. 

(4) Iteratively refine the two progressive meshes.  After each 
vertex split, update the inter-surface map and optimize it on 
the local neighborhood.  When both meshes are fully refined, 
we obtain the inter-surface map.  (Section 5) 

Steps 1 and 4 are the most challenging, and are presented in more 
detail in the next two sections.  To create the progressive meshes 
in Step 2, we constrain the edge collapse sequence to preserve the 
topology of the paths, as described by Sander et al [2001].  We 
thus obtain base domains whose edges correspond to original 
paths and whose triangles correspond to original patches (see 
Figure 2).  Since the two base domains have the same connectivi-
ty, the construction of the initial map between them in Step 3 is 
trivial. 
 

4. Initialization of coarse map 
Our goal is to form a consistent partitioning of meshes 𝑀1 and 
𝑀2 into corresponding triangular patches.  The patch boundaries 
are defined by path networks linking together feature vertices.  
These feature vertices are optionally specified by the user.  If their 
number is insufficient for the given surface genus (e.g. at least 4 
features for genus 0, more for higher genus), our algorithm auto-
matically inserts additional pairs.  We allow the path connectivity 
to be either specified (as in [Praun et al 2001]) or arbitrary (as in 
[Kraevoy et al 2003]), depending on the application scenario. 
Our approach is to link together corresponding feature pairs on 
both meshes using constrained shortest paths, similarly in spirit to 
the methods of Praun et al [2001] and Kraevoy et al [2003].  We 
add paths in a greedy fashion, subject to constraints that ensure 
consistent topology, and using heuristics that avoid swirls.  When 
a maximal graph of non-crossing paths has been created, the two 
surfaces have been partitioned into triangular patches. 

Path tracing.  We trace the shortest path between a pair of feature 
vertices using a Dijkstra search.  The search is constrained to not 
intersect with paths already in the network.  To obtain path net-
works with consistent topologies between the two meshes, we 
must maintain a consistent ordering of the neighbors of each 
vertex.  Therefore an additional constraint on the paths is to start 
and end in corresponding sectors on the two meshes.  (We assume 
that the meshes are orientable.)  When the shortest paths on each 
mesh are not consistent, we trace two candidate pairs of paths, by 
imposing the sectors from 𝑀1 on the path on 𝑀2, and vice-versa, 
and then pick the best pair. 
To allow the creation of a valid path between any pair of features, 
we lazily add extra Steiner vertices in the meshes, as suggested by 
Kraevoy et al [2003].  Our scheme performs Dijkstra searches on 
both the mesh vertices and the edge midpoints.  Since using edge 
midpoints in a path corresponds to adding Steiner vertices, we 
give preference to paths that do not use them. This may lead to 
slightly more jagged paths, but the precise geometry of the paths 
is not critical to the final map, since the paths are not constraints 
— they only guide the construction of compatible PM sequences. 
Our greedy path-insertion algorithm selects the best pair of 
corresponding paths from a priority queue sorted by the sum of 
path lengths on 𝑀1 and 𝑀2.  The queue is initially populated by 
tracing paths from each vertex to its 10 closest neighbors.  When 
the best candidate is selected, we check whether it is still valid, 
and if not we recompute it and insert it back in the queue.   
To guarantee the success of the algorithm, we must avoid enclos-
ing any vertex within a path cycle not connected to it.  Praun et al 
[2001] observe that for genus-0 surfaces it is sufficient to first 
build a spanning tree of the feature vertices (before forming any 
cycles).  We generalize this approach to arbitrary genus.  To this 
end, we must distinguish between separating and non-separating 
cycles formed by the paths.  (A separating cycle is one that breaks 
the surface into two disjoint components.)  Our strategy is to first 
build a maximal path network without separating cycles, before 
adding any paths forming separating cycles. 
For a surface of genus 𝑔 with 𝑘 feature vertices, the maximal non-
separating graph is the union of a tree spanning all feature points 
and 2𝑔 non-separating cycles, and thus has exactly 𝑘 − 1 + 2𝑔 
paths.  This maximal non-separating graph topologically cuts the 
surface into a disc [Gu et al 2002], with all the sectors around 
feature vertices as vertices on the boundary of the disc. The 
neighbor ordering constraint ensures that the ordering of the disc 
vertices is the same for both 𝑀1 and 𝑀2. In such a configuration, 
there always exists a unique way to link any two vertices (sectors 
adjacent to a feature).  Once such a path is added, each of the two 

  

  
Given set of feature points, and 

computed paths and patches. 
Resulting base meshes 

Figure 2: Example of consistent partitioning process. 



 

 

topological discs representing 𝑀1 and 𝑀2 is further split into two 
discs, which can be then consistently decomposed. 
The new path that needs to be added to split the discs may some-
times link two features that are already connected (by a path in 
different sectors, going across a handle 
of the objects).  In such cases we 
automatically introduce additional 
feature points to support the new path.  
As an example, for the pair of genus-2 
surfaces in Figure 1, 8 features are 
specified by the user, and 7 additional 
ones are automatically introduced (blue 
dots in the inset close-ups). 
There are two issues related to building the maximal non-
separating graph: avoiding separating cycles, and avoiding swirls. 

Avoiding separating cycles.  If a newly introduced path between 
vertices 𝐴 and 𝐵 forms a cycle, we test whether it is separating, 
and if so, we replace the path with one forming a non-separating 
cycle using an algorithm similar to that of Lazarus et al [2001].  
Specifically, we perform two simultaneous breadth-first searches 
starting from the vertices incident to the path 𝐴𝐵, on its two sides. 
The searches are constrained by the existing path network and by 
the candidate path 𝐴𝐵.  Each visited vertex is tagged with its 
parent (the vertex visited previously to get to it) and with the 
left/right side of 𝐴𝐵 it connects to. If we ever reach a “left” vertex 
from a “right” tagged one, then the cycle is non-separating. 
Otherwise, we form a new non-separating cycle as follows. The 
boundary of the region visited in the search at a certain time is in 
general composed of several contours that can subsequently split, 
merge, or contract to a point. When contours merge (say at a 
point 𝑂), we trace back two paths to the previous split event 𝑃, 
using the “parent” fields. From this non-separating cycle between 
𝑃 and 𝑂 we select the vertex 𝑋 closest to 𝐴 and 𝐵. We measure 
distance by tracing paths 𝑋𝐴, 𝑋𝐵 that (1) do not cross the cycle at 
points other than 𝑋, (2) meet the cycle from opposite sides, and 
(3) end at 𝐴 and 𝐵 on the same side of the temporary 𝐴𝐵 path. 
The path 𝐴𝑋-𝑋𝐵 forms the final path. 
If there are not enough user-provided features to resolve the genus 
of the object, we trace non-separating cycles connecting to one of 
the existing features using a procedure similar to the one above 
(with 𝐴 = 𝐵 and no “left”/“right” tags), and create two new 
feature constraints to support the cycle. 

Avoiding swirls.  A swirl is an awkward geometric configuration 
in which paths between feature vertices take unnecessarily long 
routes around other existing paths.  More precisely, the presence 
of corresponding feature constraints establishes homotopy classes 
on the set of inter-surface maps.  Two maps belong to the same 
class if there exists a continuous deformation between them that 
maintains the constraints.  Since swirls correspond to “poor” 
homotopy classes, they cannot be fixed using local continuous 
relaxation [Praun et al 2001].  We have found two heuristics to be 
effective at avoiding swirls. 
The first heuristic is to prefer early connection of feature points at 
mesh extremities. To identify mesh extremities, we compute for 
each feature vertex an average distance to the closest set of 
neighboring features (8 in our implementation). Vertices with a 
high distance (top 25%) are considered extrema. 
The second heuristic is to delay paths that pass on the “wrong 
side” of neighboring features [Praun et al 2001], and when forced 
to choose such a path, to re-route it on the correct side.  For each 
candidate path, we gather a set of neighboring feature vertices (the 
𝑘-closest neighbors of the two endpoints on the two meshes). For 
each of these neighbors we determine on which side of the path it 

lies by computing the side on which the shortest route from the 
neighbor to the path meets the path. If the side is different be-
tween the two meshes, then the path is likely to cause a swirl, so it 
is penalized in the pool of candidate paths. If only penalized paths 
are left, we attempt to re-route the lowest-cost path on the correct 
side of the offending neighbor vertex as follows. Shortest paths 
between the offending neighbor and the candidate path endpoints 
are computed (under normal constraints) and temporarily added to 
the path network. The new path is thus forced to go on the correct 
side of the connected component of the offending neighbor. 

Handling surface boundaries.  Our map initialization algorithm 
is easily extended to meshes with boundaries (Figure 7). Each 
boundary contour is triangulated using a single central point. The 
point is treated as a feature vertex, and must be associated with a 
corresponding boundary-center vertex on the other mesh.  Once 
the two path networks are computed, these boundary-center 
vertices are removed along with the faces used to triangulate the 
boundaries. The paths connecting to the boundary centers are 
clipped to the boundary, and these clip points become new feature 
vertices. We then consistently triangulate the resulting non-
triangular patches, and the remaining steps proceed as before. 

5. Coarse-to-fine map optimization 
Like previous work [e.g. Guskov et al 2000; Sander et al 2001], 
we optimize the map by moving one vertex at a time within its 
one-ring neighborhood to decrease the distortion metric. This 
optimization is performed after each vertex split for the new 
vertex and each of its neighbors, and for all mesh vertices when 
their total number has increased by a factor of 1.5. 
Unlike previous methods, we consider the optimization of vertex 
neighborhoods not just of 𝑀1 but also of 𝑀2.  This convenient 
symmetry is necessary since neither mesh is a special “domain”.  
It also provides finer-grain optimization than previous simplicial 
parametrization methods. 
In our current implementation, we refine only 𝑀2 for a number of 
steps, while 𝑀1 is held at constant resolution, then swap their 
roles and optimize 𝑀1, and then repeat the process. Keeping track 
of only one refining mesh at a time while the other is static results 
in lighter-weight data structures and more manageable code. For 
the scenarios where one of the meshes is very simple (octahedral 
and simplicial parametrizations), the swaps are unnecessary. 

5.1 Vertex optimization 
The main operation considers a vertex 𝑣 of 𝑀2 and optimizes its 
location 𝑣� on 𝑀1. Let 𝒩(𝑣) be the 1-ring neighborhood of 𝑣 in 
𝑀2, and 𝒩(𝑣�) be the pre-image of this neighborhood in 𝑀1 under 
the map (Figure 3a-b). The optimization only modifies the map 
inside these corresponding neighborhoods, i.e. by regenerating 
barycentric coordinates for all meta-mesh vertices within the 
interior.  Therefore we can exactly compute the change in overall 
distortion. 
To perform the relaxation, we make use of a temporary 2D para-
metrization of the neighborhood 𝒩(𝑣�) onto a planar polygon 
𝒩(𝑣�), constructed as follows (see Figure 3c).  We use a one-ring 
unfolding where 𝑣 is initially mapped to the origin 𝑣� = (0,0), 
each neighbor 𝑤 of 𝑣 is mapped to a point 𝑤�  at a radius equal to 
the path length 𝑣�𝑤� , and the angle ∡𝑢�𝑣�𝑤�  between successive 
neighbors 𝑢� ,𝑤�  is proportional to ∡𝑢�𝑣�𝑤�  (scaled such that their 
sum equals 2𝜋). The angle ∡𝑢�𝑣�𝑤�  on 𝑀1 is computed using the 
law of cosines applied to the path lengths 𝑢�𝑣�, 𝑣�𝑤� , and 𝑤�𝑢�  (or to 
the respective Euclidean distances if the path lengths do not obey 
the triangle inequality). Importantly, when 𝒩(𝑣�) is entirely 
contained inside a single face of 𝑀1, the map from 𝒩(𝑣�) to 
𝒩(𝑣�) is an isometry. 
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Once we have computed the boundary of the polygon 𝒩(𝑣�), we 
delete all the edges incident to 𝑣� and the corresponding paths 
incident to 𝑣� (along with all their intersection points on edges of 
𝑀1).  We use the mean-value parametrization scheme of Floater 
[2003] to relax the 2D locations inside 𝒩(𝑣�) of the vertices of 𝑀1 
contained within 𝒩(𝑣�).  Since the boundary of 𝒩(𝑣�) can be 
concave, flips can occur, or some interior pieces can be non-
convex. In those rare cases, we re-map the boundary to a convex 
circle-inscribed polygon [Guskov et al 2000], and repeat the 
relaxation, this time guaranteeing no folds. 
Next, we optimize the location of 𝑣� using repeated line searches 
as in [Sander et al 2001].  In these searches, we keep 𝑣� within the 
kernel of polygon 𝒩(𝑣�) to preserve map bijectivity. For each 
location of 𝑣�, we redraw its incident edges, and map these back to 
𝑀1 using the map 𝒩(𝑣�) → 𝒩(𝑣�) (Figure 3d).  We apply Con-
strained Delaunay Triangulation (CDT) to any non-triangular 
(boundary-adjacent) pieces of 𝒩(𝑣�).  For all resulting triangle 
pieces, we compose the linear maps 𝒩(𝑣�) → 𝒩(𝑣�) → 𝒩(𝑣) to 
compute the Jacobian used in measuring overall map distortion. 
We retain the location of 𝑣� that achieves lowest distortion. Note 
that due to the initial relaxation and deletion of edge-edge cross-
ings when constructing the neighborhood 𝒩(𝑣�), the final 
distortion may be larger than that before neighborhood optimiza-
tion. In this case, we discard the whole operation. 

 

  

(a) 𝒩(𝑣�) ⊂ 𝑀1; initial 𝑣� (b) 𝒩(𝑣) ⊂ 𝑀2 

 

 
(c) 𝒩(𝑣�) ⊂ ℝ2 (d) 𝒩(𝑣�) ⊂ 𝑀1; new 𝑣� 

Figure 3: Illustration of neighborhoods in vertex optimization. 

  

Figure 4. A kink vertex (red, right) is required since a direct 
segment along 𝑣�𝑤�  (dotted) goes on the wrong side of 𝑢� . 

Kink vertices.  Just as Steiner vertices are sometimes necessary 
to create a valid bijection, in rare cases we need to “kink” the 
image of an edge of 𝑀2 on 𝑀1, by breaking it at points other than 
intersections with edges of 𝑀1.  After optimizing the 2D location 
𝑣� of a vertex, we must map its incident edges back to 𝑀1.  We 
map an edge 𝑣�𝑤�  to a path 𝑣�𝑤�  by finding its intersections with 
pieces of 𝒩(𝑣�) in 2D, and mapping these intersection points to 
𝑀1 using the split ratios on their supporting segments.  Since the 
pieces of 𝒩(𝑣�) on 𝑀1 may have concave vertices, the straight-
line segment between the two mapped intersection points may not 
be contained inside the piece (Figure 4). In these rare cases, we 
use the CDT diagonals of the concave piece to support additional 
break points in the path 𝑣�𝑤� . These kinks are represented as 
temporary vertices of 𝑀2 with valence 2, and are removed when 
next optimizing 𝑣� or 𝑤� .  (When swapping 𝑀2 and 𝑀1, one of 
these optimizations is forced, in order to remove the kinks). 

5.2 Distortion metric 
Many parametrization distortion measures have been proposed, 
including angle-preservation (conformal map) [Eck et al 1995; 
Hormann et al 1999a; Levy et al 2002; Desbrun et al 2002], area-
preservation (authalic map) [Desbrun et al 2002], and stretch 
minimization [Sander et al 2001].  Often, these metrics can be 
expressed in terms of the singular values Γ, 𝛾 of the map Ja-
cobian 𝐽 (i.e. Γ2 and 𝛾2 are eigenvalues of the metric tensor 𝐽𝑇𝐽). 
Most previous distortion metrics are asymmetric, in the sense that 
optimizing 𝜙 and optimizing 𝜙−1 would not result in the same 
map.  Two exceptions are the (Γ

𝛾
+ 𝛾

Γ
) metric of Hormann et al 

[1999a] and the max(1
𝛾
, Γ) metric of Sorkine et al [2002], which 

have the key property that they are invariant to the substitution 
(Γ, 𝛾) ↔ ( 1𝛾 ,  

1
Γ
 ). 

It is likely feasible to create symmetrized versions of many prior 
metrics, including the popular discrete conformal map.  We have 
chosen to symmetrize the 𝐿2 stretch of Sander et al [2001] be-
cause it smoothly penalizes scale distortion.  We do this by 
summing direct and inverse 𝐿2 stretch: 

𝐿2(𝑇)2 = 𝐿𝑠𝑡𝑟𝑒𝑡𝑐ℎ2 (𝑀1 → 𝑀2)2 + 𝐿𝑠𝑡𝑟𝑒𝑡𝑐ℎ2 (𝑀2 → 𝑀1)2 

= 𝐴𝑇�
𝐴𝑀2  

(𝐴𝑀1)2 �
1
𝛾2 +

1
Γ2� + 𝐴𝑇

𝐴𝑀1  
(𝐴𝑀2)2 (𝛾2 + Γ2) 

where 𝐴 denotes area, 𝑇�  is a triangular piece of 𝒩(𝑣�), 𝑇 is a 
triangular piece of 𝒩(𝑣), and Γ and 𝛾 are the singular values of 
the Jacobian 𝐽 of the composed map between 𝑇�  and 𝑇.  Our 
particular definition has the key property of being invariant to the 
scale of either model.  Note that the symmetric formulation 
obviates the need for a regularizing term as was used in [Praun 
and Hoppe 2003]. 
For our results, we report the symmetric stretch efficiency, which 
is defined simply as 2/∑ 𝐿2(𝑇)2𝑇  and has an upper bound of 1. 
We also experimented with a symmetric conformal metric.  
However, such a distortion metric is less sensitive to changes in 
geometry, and therefore does not lead to natural correspondence 
of major geometric features.  As an example, in Figure 5 the 
whole head of each animal is mapped to a small disc on the neck 
of the other. 

 
Figure 5. Use of a conformal metric results in a poor inter-
surface map. 
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6. Applications and results 

6.1 Inter-surface mapping 
Figures 8, 6, and 1 show mappings between pairs of surfaces of 
genus 0, 1, and 2 respectively.  The horse-cow map in Figure 8 
uses 4 feature correspondences, the  teapot-cup map in Figure 6 
uses 22 feature points (red dots), and the dragon-feline map in  
uses 8 user-specified points and 7 automatically added. 
Generally, the constraint points are used to initialize the map, and 
are then dropped during the coarse-to-fine optimization, to im-
prove map smoothness.  To see what can happen when the 
constraints are held fixed, let us consider the teapot-cup map of 
Figure 6.  Because the interior of the cup has much more surface 
area than the teapot lid, it tries to flow around the feature con-
straints  located on the teapot rim, causing distortion (Figure 6a).  
In contrast, it unfolds nicely when the constraints are relaxed 
(Figure 6c).  If one did desire the cup and teapot rims to remain in 
correspondence, it would be best achieved by introducing con-
straint paths (instead of constraint points).  For objects that are 
geometrically similar, such as the heads in Figure 7, point features 
introduce little distortion. 
Figure 8 shows that with only four feature points placed on the 
hooves of the cow and horse models, we obtain a map where all 
the important features correspond to each other, as demonstrated 
by the morph.  (If features did not match, they would appear 
doubled.)  Not only did our optimization automatically match the 
two heads without any user-provided features in their vicinity, but 
it also matched smaller features such as the horse’s ears to the 
cow’s horns (as shown in the close-up).  Maps obtained by com-
posing two separate parametrizations to simple domains (planar, 
spherical, or simplicial) cannot easily match features in the ab-
sence of user constraints, since this information is only available 
in the combined map.  Figure 9a shows that even with 17 feature 
points (two on the eyes) the composed map does not achieve the 
quality of our inter-surface map.  Notice the presence of doubled 
features, such as nostrils, both pairs of ears and the cow’s horns. 
 

 
Figure 6. Inter-surface map between two genus-1 objects. 
(a,b) use fixed constraints while (c,d) drop the constraints after 
initialization.  (a,c) cup edges on teapot. (b) teapot edges on cup. 
(d) 50% morph.  (Sym. stretch efficiencies: (a,b) 0.471, (c,d) 0.598). 

    
𝑀1 50% morph 𝑀2 Close-up 

Figure 7. Map between two meshes with boundaries.  The 
close-up on the eye shows low distortion around the feature point 
(𝑀1 edges over 𝑀2 geometry). (Symmetric stretch efficiency 0.967). 

 

   
horse base cow base 50% morph 

Figure 8: Cow-horse inter-surface map using only 4 features. 

  
(a) composition of 2 simplicial maps (b) direct inter-surface map 
Figure 9. The inter-surface map automatically favors shape 
correspondence, unlike the composition of two separate simpli-
cial parametrizations, as shown in these morphs.  (The simplicial 
map uses the 17 feature points shown in Figure 2.) (Symmetric 
stretch efficiencies: (a) 0.416, (b) 0.442). 

6.2 Simplicial parametrization 
In this scenario, 𝑀1 is an abstract domain whose triangle faces are 
conceptually all equilateral.  Although such a domain lacks an 
isometric embedding in ℝ3, this is not a problem for the algo-
rithm. During the construction of the local neighborhood 𝒩(𝑣�) in 
Section 5.1, the faces in 𝒩(𝑣�) are simply taken to be equilateral. 
Among previous simplicial parametrization methods, the most 
advanced is the Globally Smooth Parametrization (GSP) work of 
Khodakovsky et al [2003], which attains smoothness across 
domain edges.  However, it compresses the parametrization in the 
vicinity of low-valence irregular vertices, and stretches it near 
high-valence irregular vertices.  As Figure 10 shows, our maps are 
visually smooth everywhere, and the extraordinary domain verti-
ces have much less influence on the parametrization uniformity. 



 

 

 
Figure 10. Comparison of semi-regular remeshing using GSP 
(middle) and our method (right), using the same set of base 
domain patches (left).  (One-way stretch efficiencies: bunny 0.800, 
0.915;  David 0.761, 0.902). 

6.3 Octahedral parametrization 
Praun and Hoppe [2003] use a sphere 
as an intermediate domain to para-
metrize a surface onto an octahedron, 
for subsequent geometry image 
remeshing.  By directly optimizing the 
octahedron-to-surface map, we obtain 
improved results.  The inset figure 
shows the Venus head as a geometry 
image obtained by unfolding an octa-
hedral parametrization.  As shown in Table 1, the parametrization 
stretch efficiency is improved in all cases, and the geometric 
accuracy of the remeshes (as measured with PSNR) is also im-
proved for models with many extremities. 

6.4 Toroidal parametrization  
A natural domain for genus-1 surfaces is the toroidal unit square.  
It is formed by identifying the square’s boundaries left-to-right 
and top-to-bottom.  To apply our framework to this scenario, we 
let the toroidal domain be represented by a mesh 𝑀1 with 9 

vertices and 18 triangles.  As in simplicial 
parametrization, the domain 𝑀1 does not 
have a global isometric embedding in ℝ3, 
but again we can use the local geometry 
of the domain when constructing the 
neighborhoods 𝒩(𝑣�) and 𝒩(𝑣�) in 
Section 5.1.  In this case, the triangles in 
𝒩(𝑣�) are always right isosceles triangles, 
and their configuration is such that 𝒩(𝑣�) 
is planar.  Thus, the local map 𝒩(𝑣�) →
𝒩(𝑣�)  is always an isometry. 
To initialize the parametrization, the user specifies 9 feature 
points on the input mesh 𝑀2, to correspond with the domain mesh 
vertices.  To allow maximum freedom for the map, these feature 
points do not act as constraints during coarse-to-fine optimization.  
Figure 11 shows some example results. 
There has been little work on toroidal parametrizations of arbi-
trary genus-1 surfaces, which is surprising since the domain is the 
most “Euclidean” of all closed surface topologies.  Gu and Yau 
[2003] demonstrate their global conformal approach on genus-1 
surfaces.  Compared to their results, ours exhibit less scale-
distortion due to the use of a stretch functional. 

 

 

  
Surfaces mapped into toroidal 
domain (with 2-sided lighting) 

Remeshed surfaces 
(all vertices have valence exactly 4) 

Figure 11. Examples of toroidal parametrization and remeshing. 
(One-way stretch efficiencies: teapot 0.458, rocker arm 0.582). 

7. Discussion 
An earlier implementation of our method followed a more tradi-
tional parametrization approach, with a static domain and only 
one mesh being optimized using a coarse-to-fine algorithm. To 
initialize the map we used conformal maps to establish corre-
spondences between the domain vertices and the large base 
domain faces of the progressive mesh.  This method presented 
two difficulties: (1) some patches were too large to robustly 
parametrize using a single linear system and (2) having formed 
this initial map, there was no way to effectively improve it (since 
it was “stuck” at a fine level).  Our symmetric coarse-to-fine 
approach overcomes both these difficulties. 

Model 
One-way 

𝐿2 stretch efficiency 
Remesh PSNR 

(dB) 
𝐷→𝑆→𝑀2 D→𝑀2

 𝐷→𝑆→𝑀2 D→𝑀2 
Venus 0.943 0.947 83.4 83.2 
Bunny 0.706 0.717 80.0 79.9 

Gargoyle 0.643 0.679 79.2 79.3 
Armadillo 0.454 0.528 72.0 73.0 

Horse 0.363 0.398 76.9 77.7 
Cow 0.405 0.440 74.9 77.0 

tyrannosaurus 0.360 0.418 73.6 74.5 

Table 1.  Comparison of octahedral remeshing using spherical 
parametrization (𝐷 → 𝑆 → 𝑀2) [Praun and Hoppe 2003], and 
using our direct map onto octahedron domain 𝐷. 
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An important property of directly optimizing the map between 
two surfaces is that the correspondence of geometrically similar 
features is encouraged within the distortion metric itself, thereby 
requiring fewer manually specified features.  For example, only 4 
features are sufficient to obtain a good map between the cow and 
the horse.  These 4 features on the hooves are needed to prevent a 
combinatorial optimization, i.e. which cow leg corresponds to 
which horse leg.  Our mapping problem shares similarities with 
the problem of obtaining a rigid correspondence between two 
objects.  Mesh registration energy functionals typically have many 
local minima and thus require initial user guidance, but important-
ly they have a deep energy well near the global solution. 
The major difference between our symmetric coarse-to-fine 
refinement process and previous simplicial parametrization 
methods is the opportunity for fine-grain optimization.  Simplicial 
parametrization methods apply linear relaxation operations across 
coarse domain faces, whereas we apply non-linear optimization 
on individual vertices of both meshes. 
While our method achieves impressive results for a large class of 
applications, its main current limitation is execution time.  The 
mutual tessellation is more complex than either of the input 
meshes, and managing it during optimization is time-consuming.  
Currently our implementation takes a couple of hours to create 
inter-surface maps between meshes of ~64K faces.  For the 
simplicial, octahedral, and toroidal parametrization scenarios, 
where 𝑀1 is coarse, it takes about 20 minutes to create the map.  
The space complexity of the mutual tessellation could theoretical-
ly be 𝑂(𝑛2) for a pathological worst case, but for ordinary models 
it is about 8𝑛, i.e. a small factor more than the 2𝑛 vertices from 
the two meshes.  In practice, memory usage has not been an issue. 
Another conceptual drawback of our current implementation 
(though not of the method in general) is the asymmetry of the data 
structure, which only allows one of the meshes to be refined at a 
time.  A truly symmetrical implementation allowing fine-grain 
interleaved refinement of both meshes would be more elegant. 

8. Future work 
There are several avenues for future work.  To improve speed we 
envision using fine-to-coarse propagation of information [Sander 
et al 2002] to obtain better configurations at low resolutions.  
Huge meshes could be handled using a hybrid strategy; after 
running our ISM algorithm to create a good mid-resolution map, 
we could define the finer map using simplicial map composition, 
since the simplicial pieces may be small and flat enough to avoid 
numerical problems and geometric detail mismatch. 
One exciting application is the use of inter-surface maps to auto-
matically transfer geometric texture between models.  This may 
allow surface texture synthesis using other surfaces as exemplars. 
An interesting open question is how to extend our method to 
handle multiple models.  Simultaneously optimizing an all-to-all 
map would not scale, while using one model as domain would 
lose some benefits of directly optimizing inter-surface maps. 
Another area of future work is computing maps with singularities 
to allow correspondences between objects with different topolo-
gies.  User input may be required to associate topological features 
and introduce singularities on some of the meshes. 
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