
Parallel Poisson Surface Reconstruction

Matthew Bolitho1, Michael Kazhdan1, Randal Burns1, and Hugues Hoppe2

1 Department of Computer Science, Johns Hopkins University, USA
2 Microsoft Research, Microsoft Corporation, USA

Abstract. In this work we describe a parallel implementation of the
Poisson Surface Reconstruction algorithm based on multigrid domain
decomposition. We compare implementations using different models of
data-sharing between processors and show that a parallel implementation
with distributed memory provides the best scalability. Using our method,
we are able to parallelize the reconstruction of models from one billion
data points on twelve processors across three machines, providing a nine-
fold speedup in running time without sacrificing reconstruction accuracy.

1 Introduction

New scanning and acquisition technologies are driving a dramatic increase in the
size of datasets for surface reconstruction. The Digital Michelangelo project [1]
created a repository of ten scanned sculptures with datasets approaching one
billion point samples each. New computer vision techniques [2] allow three di-
mensional point clouds to be extracted from photo collections; with an abun-
dance of photographs of the same scene available through online photo sites,
the potential for truly massive datasets is within reach. Processing such large
datasets can require thousands of hours of compute time. Recent trends in micro-
processor evolution show a movement toward parallel architectures: Multi-core
processors are now commonplace among commodity computers, and highly par-
allel graphics hardware provides even higher performance per watt. Traditional
single threaded algorithms will no longer benefit from Moore’s law, introducing
a new age in computer science in which efficient parallel implementations are
required.

This paper presents an efficient, scalable, parallel implementation of the Pois-
son Surface Reconstruction algorithm [3]. The system is designed to run on
multi-processor computer systems with dsitributed memory, allowing the recon-
struction of some of the largest available datasets in significantly less time than
previously possible. We begin our discussion with a brief review of both serial
and parallel surface reconstruction algorithms in Section 2. We then provide a
more in-depth review of the Poisson Surface Reconstruction algorithm on which
our work is based, presenting a review of the original implementation in Section
3, and its adaptation to a streaming implementation in Section 4. We describe
our parallel reconstruction algorithm in Section 5 and evaluate its effectiveness
in terms of both accuracy and efficiency in Section 6. Finally, we conclude by
summarizing our work in Section 7.



2 M. Bolitho, M. Kazhdan, R. Burns, H. Hoppe

2 Related Work

Surface reconstruction has been a well studied problem within the field of Com-
puter Graphics. The work can be roughly divided into two categories: Compu-
tational geometry based methods; and function fitting methods.

Computational Geometry: Computational geometry based methods use
geometric structures such as the Delaunay triangulation, alpha shapes or the
Voronoi diagram [4–9] to partition space based on the input samples. Regions
of space are then classified as either ‘inside’ or ‘outside’ the object being re-
constructed and the surface is extracted as the boundary between interior and
exterior regions. As a consequence of using these types of structures, the recon-
structed surface interpolates most or all of the input samples. When noise is
present in the data, the resulting surface is often jagged and must be refit to the
samples [7] or smoothed [5] in post-processing.

Function Fitting: The function fitting approaches construct an implicit
function from which the surface can be extracted as a level set. These methods
can be broadly classified as global or local approaches.

Global fitting methods commonly define the implicit function as the sum of
radial basis functions centered at each of the input samples [10–12]. However, the
ideal basis functions, poly-harmonics, are globally supported and non-decaying,
so the solution matrix is dense and ill-conditioned. In practice such solutions are
hard to compute for large datasets.

Local fitting methods consider subsets of nearby points at a time. A simple
scheme is to estimate tangent planes and define the implicit function as the
signed distance to the tangent plane of the closest point [13]. Signed distance
can also be accumulated into a volumetric grid [14]. For function continuity, the
influence of several nearby points can be blended together, for instance using
moving least squares [15, 16]. A different approach is to form point neighborhoods
by adaptively subdividing space, for example with an octree. Blending is possible
over an octree structure using a multilevel partition of unity, and the type of
local implicit patch within each octree node can be selected heuristically [17].
Since local fitting methods only consider a small subset of the input points at
a time, the solutions are more efficient to compute and handle large datasets
with greater ease than global methods. The greatest challenge for local fitting
methods is how to choose the subset of points to consider at any given point
in space. These heuristic partitioning and blending choices make local fitting
methods less resilient to noise and non-uniformity in the input samples.

Parallel Surface Reconstruction Despite the increasing presence of com-
modity parallel computing systems, there has been comparatively little work on
parallel surface reconstruction. The work of [18] implements the Poisson method
on the GPU, achieving significant speedups for small datasets. A significant lim-
itation of the implementation is that it requires the entire octree, dataset and
supplemental lookup tables to reside in GPU memory, limiting the maximum
size of reconstructions possible. To simplify the lookup of neighbor nodes in the



Lecture Notes in Computer Science 3

octree and reduce the total number of node computations required, the imple-
mentation also uses first-order elements. While this allows a more GPU-friendly
implementation, the lower-degree functions make the method more susceptible
to noise and other anomalies in the input data.

Some other surface reconstruction algorithms lend themselves to efficient
parallel implementations. Many local implicit function fitting methods can be at
least partially parallelized by virtue of the locality of most data dependencies.
Global implicit function fitting methods often have complex data dependen-
cies that inhibit parallelism. Finally, computational geometry approaches can
leverage parallel processing by computing structures such as the Delaunay tri-
angulation in parallel (e.g. [19]).

3 Poisson Surface Reconstruction

The Poisson Surface Reconstruction method [3] uses a function fitting approach
that combines benefits from both global and local fitting schemes. It is global
and therefore does not involve heuristic decisions for forming local neighbor-
hoods, selecting surface patch types, and choosing blend weights. Yet, the basis
functions are associated with the ambient space rather than the data points,
are locally supported, and have a simple hierarchical structure that allows the
resulting linear system to be solved efficiently.

The Poisson Idea: To solve the surface reconstruction problem, the Poisson
method reconstructs the indicator function, a function that has value one inside
the surface and zero outside. The key idea is to leverage the fact that an ori-
ented point set can be thought of as a sampling of the gradient of the indicator
function. This intuition is formalized by using the discrete point set to define
a continuous vector field V representing the gradient field of the (smoothed)
indicator function. Solving for the indicator function χ then amounts to finding
the scalar function whose gradient best matches V , a variational problem that
is optimized by solving the Poisson equation: ∆χ = ∇ · V .

Function Representation: Since the indicator function (and therefore its
gradient) only contains high-frequency information around the surface of the
solid, an adaptive, multi-resolution basis is used to represent the solution. Specif-
ically, an octree O is adapted to the point samples and then a function space is
defined by associating a tri-variate B-spline Fo to each octree node o ∈ O. The
B-spline Fo is translated to the node center and scaled by the size of the node,
and the span F of the translated and scaled B-splines defines the function-space
over which the Poisson equation is solved.

Solving the Poisson Equation: To solve the Poisson equation, a finite-
elements approach is used, with the system discretized by using the elements Fo

as test functions. That is, the system is solved by finding the function χ in F
such that: 〈∆χ,Fo〉 = 〈∇ · V, Fo〉 for all o ∈ O.



4 M. Bolitho, M. Kazhdan, R. Burns, H. Hoppe

4 Streaming Implementation

To enable the reconstruction of models larger than memory, the algorithm was
adapted to operate out-of-core, using a streaming implementation to maintain
only a small subset of the data into memory at any given time [20]. The key ob-
servation in performing Poisson Surface Reconstruction in an out-of-core manner
is that the computations required for each step of the process are local, due to
the compact support of the basis functions Fo. Specifically, each step can be
described by evaluating a node function N across all nodes in O, where the
result of N(o) for each o ∈ O is dependent only on the nodes o′ ∈ O where
〈Fo, Fo′〉 6= 0 (i.e whose base functions overlap). Spatially, this corresponds to a
small neighborhood immediately surrounding o and all its ancestors in O.

In a one dimension, the most efficient streaming order is a simple left to
right traversal of the tree nodes: in this configuration, neighborhoods are always
compact and contiguous in the data streams. This ordering is generalized to
higher dimensions by grouping nodes into 2D slices (i.e. all nodes at a certain
depth with the same x-coordinate), and streaming the data on a slice-by-slice
basis. Since a node must remain in main memory from the first to the last time
it is referenced by other nodes, and since coarse levels of the tree have longer
lifetimes than finer levels of the tree, a multi-level streaming approach is used.

5 Parallel Surface Reconstruction

When designing the streaming implementation, one of the primary concerns
was minimizing the effect of the I/O required for out-of-core processing. In par-
ticular, this motivated the streaming approach (since streaming I/O is highly
efficient) and the minimization of the number of passes required through the
data (minimizing the total amount of I/O performed). When considering a par-
allel implementation, a different set of design concerns prevail: minimizing data
sharing and synchronization.

5.1 Shared Memory Implementation

In this section, we consider a simple, shared-memory parallelization of the re-
construction algorithm. Although this is not the model we use for our final im-
plementation, analyzing the shared-memory implementation provides valuable
insight regarding the key properties a parallel solver must satisfy to demonstrate
good speed-up when parallelized across numerous processors.

The most straightfoward parallelization of the serial streaming implementa-
tion is to evaluate each node function Ni in parallel, since the restrictions placed
on data dependencies for efficient streaming allow the function to be evaluated in
any order within a slice. With slices in large reconstructions typically containing
tens or hundreds of thousands of nodes, there appears to be ample exploitable
parallelism. A data decomposition approach can be used, with each processing



Lecture Notes in Computer Science 5

slice in the octree partitioned into a coarse regular grid. Since the data depen-
dencies of a node function are compact, the only shared data between partitions
within the same level of the tree resides around the perimeter of each partition.
To execute a node function across a slice, each processor is assigned a num-
ber of data partitions for processing in a way that best balances the workload.
Although this approach provides a straightforward implementation, it has two
significant scalability issues.

First, for distributive functions, data are shared not only within a level of
the tree, but across all depths of the tree. At the finest levels, the contention
for shared data is very low – since a very small portion of each partition is
shared, the probability of two processors needing concurrent access to a datum
are low. At the coarser levels of the tree, however, the rate of contention becomes
very high – and the data associated with the coarsest levels of the tree are
updated by each processor for every computation. We found that this problem
persisted even when we used an optimistic, lock-free technique that implemented
an atomic floating-point accumulation (i.e. A+ = x) using the compare-and-set
(CAS) instruction found in most modern processor architectures.

Second, scalability is limited by the frequency of global synchonization bar-
riers required to evaluate multiple functions correctly. Each streaming pass, P ,
across the octree is a pipeline of functions P = {N1, N2, ..., Nn} that are exe-
cuted in sequence. Although the data dependencies are such that the evaluation
of Ni(o) cannot depend on the result of Ni(o

′), it is possible that Ni may de-
pend on Nj if i > j. The implication of this in a parallel setting is that function
Ni cannot be evaluated for a particular slice until Nj has completed processing
in dependent slices on all processors, requiring a global synchronization barrier
between each function, for each processing slice. For all but the very largest recon-
structions, the resulting overhead is prohibitive. Although this synchronization
frequency can be reduced by processing functions over slabs of data formed from
multiple octree slices, the associated increase in in-core memory usage results in
an undesirable practical limitation on the reconstruction resolution.

5.2 Distributed Memory Implementation

To address the scalability issues that arise from using a shared memory, multi-
threaded architecture, we instead implement our solver using a distributed mem-
ory model. In this model, each processor shares data explicitly through message
passing, rather than implicitly through shared memory. The advantages of this
model over the shared memory approach are as follows:

1. Each processor maintains a private copy of all data it needs. Thus, data
writes during computation can be performed without the need for synchro-
nization. Data modified on more than one processor can be easily and effi-
ciently reconciled at the end of each computation pass.

2. Without the need for shared memory space, the system can be run on com-
puting clusters, offering the potential for greater scalability, due to the in-
creased memory and I/O bandwidth, as well as number of processors.



6 M. Bolitho, M. Kazhdan, R. Burns, H. Hoppe

O0

O1

O2

O3

0 O3

1 O3

2 O3

3

O4

0 O4

1 O4

2 O4

3

d = 0

d = dfull

d = dmax

x0 x1 x2 x3 x4

Fig. 1: An illustration of the way data partitions are formed from the tree with p =
4 processors. All nodes in O0, O1 and O2 are shared amoungst all processors, and
together form the data partition Ofull. The nodes in remaining depths are split into
spatial regions defined by the x-coordinates {x0, x1, x2, x3, x4}, to form the partitions
Od

i .

Furthermore, we adapt the streaming implementation by implementing each
of the functions as a separate streaming pass through the data. While this in-
creases the amount of I/O performed, it alleviates the need for global, inter-slice,
synchronization barriers that are required to allow multiple functions to be eval-
uated correctly.

Data Partitioning Instead of fine-grained, slice-level parallelism, the distributed
system uses a coarse-grained approach: given p processors, the reconstruction
domain is partitioned into p slices along the x-axis given by the x-coordinates
X = {x0, x1, x2, ..., xp}. The nodes from depth d in the octree are split into
partitions Od = {Od

1 ,Od
2 , ...,Od

p} where Od
p are all nodes o ∈ O such that

xp ≤ o.x < xp+1 and o.d = d.

Since the coarse nodes in the tree are frequently shared across all processors,
we designate the first dfull levels in the tree to be part of its own data partition
Ofull, which is not owned by a particular process, and whose processing is carried
out in duplicate by all processors. Since the total data size of Ofull is small, the
added expense of duplicating this computation is significantly less than the cost
of managing consistent replication of the data.

Figure 1 summarizes the decomposition of the octree into partitions. A pro-
cessor Pi is assigned to own and process the nodes in O∗

i in a streaming manner.
To allow for data sharing across slabs, processor i has a copy of data in partitions
O∗

i−1 and O∗

i+1 from the result of the previous pass through the data, as well
its own copy of Ofull. Since only a very small portion of data in O∗

i−1 and O∗

i+1

are ever read or written from Pi (only the data in slices immediated adjacent
to O∗

i ), the neighboring data partitions are sparsely populated minimizing the
amount of redundant storage required.

Since each function is implemented in a separate streaming pass, the ex-
ecution of a function Ni in one data partition can no longer depend on the



Lecture Notes in Computer Science 7

execution of a function Nj in another partition, and a global synchronization is
only required between the different streaming passes. In practice, we have found
that the arithmetic density of most functions is such that the I/O bandwidth
required to perform a streaming pass is more than an order of magnitude less
that the bandwidth that modern disk drives can deliver, so processing only a
single function per pass does not noticeably affect performance.

Load Balancing Because the octree is an adaptive structure, its nodes are non-
uniformly distributed over space. This presents a challenge when choosing the
partition bounds X in order to most optimally allocate work across all processors.
To minimize workload skew, each partition Od

i should be approximately the same
size (assuming that the processing time of each node is, on average, constant).

Because we wish to perform the allocation of nodes to partitions before the
tree has been created, we use the input point-set to estimate the density of
nodes in the tree. Since an octree node may not straddle two data partitions,
the partition bounds X must be chosen such that each xi is a multiple of 2−dfull

(i.e. the width of the coarsest nodes in the high-resolution tree). We use a simple
greedy algorithm to allocate X: Given an ideal partition size of Nideal = N

p
we

grow a partition starting at x = 0 until the partition size would exceed Nideal. We
then over-allocate or under-allocate the partition depending on which minimizes
|Ni−Nideal|. The procedure is continued along the x-axis until all partition sizes
have been determined.

Replication and Merging of Shared Data Once data have been modified by
a processor, the changes need to be reconciled and replicated between processors.
A majority of the shared updates performed by the reconstructor are of the form
o.v = o.v +v; that is, accumulating some floating point scalar or vector quantity
into tree nodes. The merge process for a process Pi is as follows:

1. If Pi has written to Oi−1 and Oi+1, send data to Pi−1 and Pi+1 respectively.
2. If Pi−1 and Pi+1 have modified data in Oi, wait for all data to be received.
3. Merge the received data blocks with the data in Oi (an efficient vector ad-

dition operation).

Once data has been reconciled, the updated data can then be redistributed to
other processes as follows:

1. If Pi has been updated and is needed by Pi−1 or Pi+1 in the next pass, send
Oi to the neighboring processors.

2. If Pi−1 and Pi+1 have modified data needed for the next pass, wait for all
updated data blocks.

Because each processor streams through the data partitions, changes made
to data can be sent asynchronously to other processing nodes as each block in
the stream is finalized, rather than after the pass is complete, thereby hiding the
latency involved in most message passing operations.



8 M. Bolitho, M. Kazhdan, R. Burns, H. Hoppe

In addition to the accumulation-based data reconciliation, there are two im-
portant steps in the reconstruction process that cannot be merged and replicated
as efficiently.

Tree Construction To maximize the parallel processing capability of our sys-
tem, the construction of the octree itself is performed in parallel. The input
point-set P is partitioned during pre-processing into segments P = {P1, ...,Pp}
where Pi contains all points xi ≤ p.x < xi+1 (where xi is the partitioning bounds
separating the domain of process Pi−1 from process Pi).

The first challenge presented in the construction of the tree is the different
topological structure created in Ofull by each processor. To facilitate efficient
merging of data in later steps, it is desirable to have a consistent coarse resolution
tree. Although it is possible to merge each of the coarse resolution trees after
the first pass, we take a simpler approach: because the coarse resolution tree is
small, we pre-construct it as a fully refined octree of depth dfull.

The second challenge is that in the initial phases of the reconstruction, a
point in partition Pi may affect the creation of nodes outside of Oi (since the B-
splines are supported within the 1-ring of a node). Although this problem could
be resolved by allowing processors to generate nodes outside their partition and
then merging the nodes at the end of the streaming pass, we have opted for a
simpler solution. Recognizing that the points that can create nodes and update
data in Oi are in the bounds xi − δx ≤ p.x < xi+1 + δx, (where δx = 2−dfull is
the width of the finest-level nodes in the full octree Ofull) we have processor Pi

process this extended subset of points and only perform the associated updates
of nodes in Oi. In practice, this adds a small computational cost by processing
overlapping point data partitions, but greatly simplifies the creation of the tree.

Solving the Laplacian To solve the Poisson equation correctly in a parallel
setting, we use an approach inspired by domain decomposition methods [21]. In
the serial implementation, the linear system is solved in a streaming manner us-
ing a block Gauss-Siedel solver, making a single pass through the data. Although
we can still leverage this technique within each data partition, the regions of the
linear system that fall near the boundaries need special treatment to ensure that
the solution across partitions is consistent and correct. To avoid the need for the
solver in Oi to depend on a solution being computed in Oi−1, each processor Pi

solves a linear system that extends beyond the bounds of Oi by a small region of
padding, and once solutions have been computed by all processors, the solution
coefficents in overlapping regions are linearly blended together to give a solution
which is consistent across partition boundaries.

6 Results

To evaluate our method, we designed two types of experiments. In the first, we
validate the equivalence of our parallel implementation to the serial one, demon-
strating that correctness is not sacrificed in the process of parallelization. In the



Lecture Notes in Computer Science 9

Procs. Verts. Tris. Max δ Average δ

1 320,944 641,884 - -

2 321,309 641,892 0.73 0.09

4 321,286 641,903 0.44 0.06

8 321,330 641,894 0.98 0.12

Fig. 2: An analysis of correctness: A comparison of several different reconstructions of
the Bunny dataset at depth d = 9 created with the distributed implementation. The
table summarizes the size of each model, and the maximum and the average distance
of each vertex from the ground-truth. The image on the right shows the distribution of
error across the p = 8 model. The color is used to show δ values over the surface with
δ = 0.0 colored blue and δ = 1.0 colored red.

second, we evaluate the scalability of our parallel implementation.

Correctness We wish to ensure that the surface generated by the parallel im-
plementation is equivalent in quality to the serial implementation. In particular,
we want to ensure that the model doesn’t significantly change as the number
of processors increases, and that any differences that do exist do not accumu-
late near partition boundaries. To test this, we ran an experiment using the
distributed implementation, reconstructing the Stanford Bunny model at depth
d = 9 using 1, 2, 4, and 8 processors. We then compared the model generated
with only one processor Mserial, to the models generated with multiple proces-
sors Mi by computing an error value δ at each vertex of Mi that is the Euclidean
distance to the nearest point on the triangle mesh of Mserial. The units of δ are
scaled to represent the resolution of the reconstruction so that 1.0δ = 2−d (the
width of the finest nodes in the tree).

The table in Figure 2 presents the results of this experiment. Some differences
in the output are expected between different numbers of processors because of the
lack of commutativity of floating point arithmetic. The results show that in all
cases, the average error is low, and the maximum error is bounded within the size
of the finest tree nodes. It also shows that error does not change significantly as
the number of processors increases. The image in Figure 2 shows the distribution
of error across the mesh for p = 8, and is typical of all multiple processor results.
The image highlights that error is evenly distributed across the mesh, and that
the only significant error occurs along the shape crease along the bottom of the
bunny’s back leg. These errors are the result of a different choice in triangulation
along the edge.

Scalability One of the most desirable properties of a parallel algorithm is scal-
ability, the of an ability algorithm to run efficiently as the number of processors
increases. Table 1 shows the running times and Figure 3 shows the speedup of
both the shared memory and distributed memory implementations on up to 12
processors when reconstructing the Lucy dataset from 94 million points, and the



10 M. Bolitho, M. Kazhdan, R. Burns, H. Hoppe

Shared Memory Distributed Memory
Lucy Lucy David

Processors Lock Time Lock-Free Time Time Disk Memory Time Disk Memory

1 183 164 149 5,310 163 1,970 78,433 894

2 118 102 78 5,329 163 985 79,603 888

4 101 68 38 5,368 164 505 81,947 901

6 102 61 26 5,406 162 340 84,274 889

8 103 58 20 5,441 166 259 86,658 903

10 - - 18 5,481 163 229 88,997 893

12 - - 17 5,522 164 221 91,395 897

Table 1: The running time (in minutes), aggregate disk use (in MB), and peak memory
use (in MB) of the shared memory and distributed memory implementations of the
Parallel Poisson Surface Reconstruction algorithms for the Lucy dataset at depth d =
12, dfull = 6 and the David dataset at depth d = 14, dfull = 8, running on one through
twelve processors. It was not possible to run the shared memory implementation on
more than eight processors.

David dataset from 1 billion points. The shared memory implementations were
run on a dual quad core workstation. The distributed memory implementation
was run on a three machine cluster with quad core processors and a gigabit
ethernet interconnect. Two variations of the shared memory implementation
are examined: one which uses fine-grained spatial locking to manage concurrent
updates, and the other using the lock-free update procedure. The lock-free tech-
nique is faster and offers greater scalability than the spatial locking scheme, but
the scalability is still limited when compared to the distributed implementation.
One significant factor affecting the performance is the way in which both the spa-
tial locking and lock free techniques interact with architectural elements of the
underlying hardware. When locking shared data between processors, data that
was kept primarily in fast on-chip memory caches has to be flushed and shared
through main memory each time it is modified to keep separate caches coherent.
This forces frequently shared data to be extremely inefficient to access, with no
cache to hide high latency memory access. Because the distributed implemen-
tation doesn’t need to coordinate writes to the same data, the computation is
far more efficient, and cleanly scales with increasing numbers of processors. The
reduced scalability as the number of processors increases is due to the complete
occupancy of all processors on each machine, causing the algorithm to become
memory bandwidth bound. Table 1 also lists the peak in-core memory use and
aggregate disk use of the distributed algorithm. Since the in-core memory use
is related to the size of the largest slices and each data partition is streamed
independently, peak memory use is consistent across all degrees of parallelism.
Because of the replication of across processors, the disk use grows as the number
of processors increases. A majority of the extra data storage is from Ofull, whose
size grows as dfull is increased. For the Lucy model, with dfull = 6, the size of
Ofull is 18MB, whereas for the David model, with dfull = 8, it is 1160MB.



Lecture Notes in Computer Science 11

2 4 6 8 10 12

2

4

6

8

10

12

Number of Processors

O
b
se

rv
ed

S
p
ee

d
u
p

Ideal Scaling

Spatial Locking (Lucy)

Lock-Free (Lucy)

Distributed (Lucy)

Distributed (David)

Fig. 3: Analysis of scalability: The speedup of three different parallel Poisson Surface
Reconstruction algorithms for the Lucy dataset at depth d = 12 and the David dataset
at depth d = 14 running on one through twelve processors. The Spatial Locking and
Lock-Free methods use a shared memory based implementation with two different
locking techniques to resolve shared data dependencies. The distributed method uses
data replication and message passing to resolve shared data dependencies.

7 Conclusion

We have presented an implementation of the Poisson Surface Reconstruction
algorithm that is specifically designed for parallel computing architectures using
distributed memory. We have demonstrated both its equivalence to the serial
implementation and efficient execution on commodity computing clusters with a
nine-fold speedup in running time on twelve processors. One avenue we intend to
persue in future work is support for parallel processing on a GPU-based cluster.

8 Acknowledgements

We would like to acknowledge the Stanford 3D Scanning Repository for gener-
ously distributing their data. The authors would also like to express particular
thanks to Szymon Rusinkiewicz and Benedict Brown for providing non-rigid
body aligned Lucy and David scan data [22]. This work was supported in part
by an NSF CAREER Award. The authors would also like to thank NVIDIA
Corporation for support.



12 M. Bolitho, M. Kazhdan, R. Burns, H. Hoppe

References

1. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginz-
ton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The Digital
Michelangelo project: 3D scanning of large statues. In: SIGGRAPH 2000. (2000)

2. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from Internet photo
collections. Int. J. Comput. Vision 80 (2008) 189–210

3. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: SGP.
(2006) 61–70

4. Boissonnat, J.D.: Geometric structures for three-dimensional shape representation.
ACM TOG 3 (1984) 266–286

5. Kolluri, R., Shewchuk, J.R., O’Brien, J.F.: Spectral surface reconstruction from
noisy point clouds. In: SGP. (2004) 11–21

6. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM TOG 13

(1994) 43–72
7. Bajaj, C.L., Bernardini, F., Xu, G.: Automatic reconstruction of surfaces and

scalar fields from 3d scans. In: SIGGRAPH. (1995) 109–118
8. Amenta, N., Bern, M., Kamvysselis, M.: A new voronoi-based surface reconstruc-

tion algorithm. In: SIGGRAPH. (1998) 415–421
9. Amenta, N., Choi, S., Kolluri, R.K.: The power crust, unions of balls, and the

medial axis transform. Comp. Geometry 19 (2000) 127–153
10. Muraki, S.: Volumetric shape description of range data using “blobby model”. In:

SIGGRAPH. (1991) 227–235
11. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum,

B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial
basis functions. In: SIGGRAPH. (2001) 67–76

12. Turk, G., O’brien, J.F.: Modelling with implicit surfaces that interpolate. ACM
TOG 21 (2002) 855–873

13. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimiza-
tion. In: SIGGRAPH. (1993) 19–26

14. Curless, B., Levoy, M.: A volumetric method for building complex models from
range images. In: SIGGRAPH. (1996) 303–312

15. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point set
surfaces. In: IEEE VIS. (2001) 21–28

16. Shen, C., O’Brien, J.F., Shewchuk, J.R.: Interpolating and approximating implicit
surfaces from polygon soup. In: SIGGRAPH. (2004) 896–904

17. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of
unity implicits. ACM TOG 22 (2003) 463–470

18. Zhou, K., Gong, M., Huang, X., Guo, B.: Highly parallel surface reconstruction.
Technical Report 53, Microsoft Research (2008)

19. Hardwick, J.C.: Implementation and evaluation of an efficient parallel delaunay
triangulation algorithm. In: Proceedings of the 9th Annual ACM Symposium on
Parallel Algorithms and Architectures. (1997) 23–25

20. Bolitho, M., Kazhdan, M., Burns, R., Hoppe, H.: Multilevel streaming for out-of-
core surface reconstruction. In: SGP. (2007) 69–78

21. Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations. (Cambridge University Press)

22. Brown, B.J., Rusinkiewicz, S.: Global non-rigid alignment of 3-D scans. ACM
TOG 26 (2007)


