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Abstract 
Adaptive multiresolution hierarchies are highly efficient at representing spatially coherent graphics data.  We 
introduce a framework for compressing such adaptive hierarchies using a compact randomly-accessible tree 
structure.  Prior schemes have explored compressed trees, but nearly all involve entropy coding of a sequen-
tial traversal, thus preventing fine-grain random queries required by rendering algorithms.  Instead, we use 
fixed-rate encoding for both the tree topology and its data.  Key elements include the replacement of pointers 
by local offsets, a forested mipmap structure, vector quantization of inter-level residuals, and efficient coding 
of partially defined data.  Both the offsets and codebook indices are stored as byte records for easy parsing by 
either CPU or GPU shaders.  We show that continuous mipmapping over an adaptive tree is more efficient us-
ing primal subdivision than traditional dual subdivision.  Finally, we demonstrate efficient compression of 
many data types including light maps, alpha mattes, distance fields, and HDR images. 
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Figure 1: Coherent data stored in a compact randomly accessible adaptive hierarchy with efficient mipmap filtering.

1. Introduction 
Spatial data in computer graphics is often very coherent.  
For example, distance fields are continuous, light maps are 
smooth except at shadow boundaries, alpha mattes are 
constant except near silhouettes, and high-dynamic-range 
(HDR) images have broad regions of similar luminance.  
Effective data compression permits more image content to 
be stored within a given memory budget. 
There is a large body of work on compressing coherent 
data, particularly in the context of images.  However, most 
compression schemes such as JPEG2000 involve sequential 
traversal of the data for entropy coding, and therefore lack 
efficient fine-grain random access.  A fundamental chal-
lenge in rendering is that, while some input can be 
streamed sequentially (e.g. geometric primitives), the 
remaining data accesses are often random (e.g. projected 
texture maps, parallax occlusion maps, shadow maps). 
Compression techniques that retain random access are more 
rare. A common approach is fixed-rate compression of 
image blocks, such as vector quantization [YFT80; 
NH92;BAC96] and the S3TC/DXT scheme widely availa-
ble in hardware [MB98]. 

For the case of coherent data, traditional block-based 
compression has two drawbacks.  First, blocks encode data 
at a single scale and therefore lack a good prediction model 
for low-frequency variations (e.g. linear ramps) that span 
across many blocks.  Second, most schemes allocate a 
uniform bit-rate across the image, and thus lose information 
in high-detail regions, while over-allocating bits in low-
detail regions. 
Adaptive hierarchies such as wavelets and quadtrees offer 
both multiresolution prediction and spatial adaptivity [e.g. 
Sha93;Sam06].  Such tree structures have been applied to 
light maps [Hec90], distance fields [FPRJ00], point sets 
[RL01], octree textures [BD02;DGPR02], and irradiance 
[CB04].  Several techniques compress trees as reviewed in 
Section 2, but these techniques generally require sequential 
traversal and therefore give up efficient random access. 
Contributions.  We design a compressed tree representa-
tion that preserves fine-grain random access by using fixed-
rate encoding for both the tree topology and its data. As 
shown in Figure 1, our scheme efficiently compresses 
coherent spatial data that is typically difficult for traditional 
block-based approaches: distance fields, light maps, alpha 
mattes and HDR images.  To our knowledge this is the first 
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scheme to offer random access to a compressed adaptive 
hierarchy.  Novel elements include: 
• Use of a primal-subdivision tree structure for efficient 

mipmap filtering over an adaptive hierarchy. 
• Replacement of node pointers by local offsets, and 

optimization of tree layout for concise offset encoding. 
• A forested mipmap structure formed by replacing the 

coarsest levels by a mipmap and indirection table. 
• Lossy compression of inter-level residuals using vector 

quantization (VQ) over broods in the tree, and extension 
to sparsely defined data. 

The end result is an extremely simple data structure in 
which both topology and data are encoded in 8-bit fields.  
Because the codebook indices refer to data blocks rather 
than individual samples, the tree is one level shallower than 
the finest resolution data. 
Our scheme is not intended for detailed color images, 
which result in dense trees and are thus better handled by 
block-based schemes.  Nonetheless we show that these 
encode reasonably well. 
Evaluation cost.  One concern with tree structures is that 
they may increase memory bandwidth since each query 
involves several memory references.  However, hierar-
chical access patterns are very coherent in practice [CB04], 
so most memory reads can be intercepted by memory 
caches.  In fact, with sufficient query locality, the tree data 
only needs to be read from memory once (per pass), so the 
compactness of the tree is a bandwidth win, as analyzed in 
more detail in Section 8. 
To mitigate the computational cost of traversing the tree, 
we collapse the coarsest levels to form a “forested mip-
map” as described in Section 4.3. 
Our compressed adaptive tree is appropriate for both CPU 
and GPU evaluation.  We demonstrate trilinear mipmap 
evaluation within a pixel shader, and achieve real-time 
performance without specialized hardware. 

2. Related work 
Sequential traversals.  Most schemes for compressing tree 
data consider a linear ordering of the tree nodes and encode 
a sequence of traversal codes and/or data residuals [e.g. 
Kno80;Woo84;Sam85;GW91;TS00].  Using a good predic-
tion model and entropy coding, such pointerless 
representations achieve excellent compression, and have 
been applied to image wavelets [Sha93], isosurfaces 
[SK01], and point-based surfaces [BWK02].  However, 
these linear representations do not allow efficient random 
access to the spatial data, as they require decompression of 
the whole tree. 
Location codes.  An alternative is to store a spatially 
ordered list of the locations of leaf nodes [e.g. Gar82], but 
such a list does not permit hierarchical compression of the 
node data. 
Random-access trees.  Rusinkiewicz and Levoy [RL01] 
introduce a point-cluster hierarchy that supports view-
dependent traversal.  Their structure could be adapted to 
random point queries, but this would require decoding of 
many sibling nodes at each tree level. 

Hierarchical vector quantization.  Several schemes use 
VQ in a hierarchical setting.  Gersho and Shoham [GS84] 
apply VQ to coarse-level amplitudes, and use these quan-
tized values to guide the selection of codebooks at finer 
levels.  Vaisey and Gersho [VG88] adaptively subdivide 
image blocks based on their variance, apply frequency 
transforms to the blocks, and use different VQ codebooks 
for different-sized blocks. The multistage hierarchical 
vector quantization (MSHVQ) of Ho and Gersho [HG88] is 
closest to our approach in that its stages perform downsam-
pling, block-based VQ, and subtraction of the linearly 
interpolated reconstructions.  It differs in that the VQ 
blocks do not form a regular tree structure, and adaptivity is 
only considered in the last stage with highest resolution.  
Tree-structured VQ [GG92] uses a decision tree to acceler-
ate VQ encoding; another acceleration technique is 
hierarchical table lookup [CCG96]. 
Block-based schemes.  Block-based data compression has 
been a very active area of research [e.g. SW03;SA05].  The 
latest graphics hardware supports several new block-based 
schemes [Bly06].  The most relevant to us is 
DXGI_FORMAT_BC4_UNORM (BC4U), a scheme for 
lossy compression of single-channel (grayscale) images; it 
is 4 bits/pixel like the original DXT1 scheme. 
Adaptive random-access schemes.  Other adaptive repre-
sentations include indirection tables [KE02], page tables 
[LKS*06], quadtrees of images [FFBG01], B-trees of 
losslessly compressed blocks [IM06], and spatial hashing 
[LH06]. These schemes are able to adapt the spatial distri-
bution of data samples, but do not focus on hierarchical 
compression of the data itself. 
Unlike previous random-access compression schemes, our 
hierarchy exploits data prediction across resolutions, which 
is key to concisely encoding smoothly varying data. 

3. Primal subdivision for efficient interpolation 

3.1 Traditional dual subdivision 
In a traditional region quadtree (dimension 𝑑 = 2), nodes 
correspond to spatial cells that are properly nested across 
resolution levels, forming a dual-subdivision structure 
[ZS01]. An important drawback of a dual tree is that 
mipmap filtering becomes expensive when the tree is 
adaptive. Indeed, Benson and Davis [BD02] explain that 
mipmap interpolation requires a total of 3𝑑 lookups per 
level. The problem is that pruned tree nodes must be 
interpolated from the next-coarser level (as shown by the 
red arrows in Figure 2a), and this interpolation requires a 
large support (e.g. point 𝐷 requires values from nodes 𝐴, 𝐵, 
and 𝐶).  Also, in pruned areas of the tree, the successive 
interpolations of the 3𝑑 local nodes is equivalent to a 
multiquadratic B-spline, which is nicely smooth but expen-
sive to evaluate. 

3.2 Our primal subdivision approach 
We instead associate tree nodes with the cell corners (e.g. 
as in [FPRJ00] and [LKS*06]), so that finer nodes have 
locations that are a superset of coarser nodes (though their 
values may differ).  This corresponds to a primal-
subdivision structure, and allows continuous interpolation 
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over an adaptive tree using only 2𝑑 lookups per level (e.g. 
nodes 𝐵,𝐶 in Figure 2b).  Moreover, refinement can termi-
nate with simple multilinear interpolation when all 2𝑑 local 
nodes are pruned.  To our knowledge these advantages of 
primal trees have not been explained previously. 
To represent a primal tree, we “slant” the tree structure as 
shown in Figure 2b.  Thus, in 2D, the children of a node at 
location (𝑥,𝑦) have locations (𝑥,𝑦), (𝑥 + 2−𝑙 ,𝑦), (𝑥,𝑦 +
2−𝑙), and (𝑥 + 2−𝑙 ,𝑦 + 2−𝑙) in level 𝑙.  This slanting 
causes some subtrees to fall outside the input domain, as 
illustrated by the dangling links on the right boundary.  
(Dual trees have similar undefined subtrees if the domain 
size is not a power of two.)  Fortunately, our data compres-
sion scheme (Section 5) is able to efficiently ignore such 
undefined data. 
For completeness, we show pseudocode for continuous 
mipmap interpolation over a primal 1D tree, first on a 
complete tree: 

class Tree { 
 Tree L, R; 
 float val; 
} 

float evaluate1D(Tree root, float x, float level) { 
 return evaluate1DRec(x, level, root.L, root.R); 
} 

float evaluate1DRec(float x, float level, Tree l, Tree r) { 
 float vC = interp(l.val, r.val, x); // value at current level 
 if (level<=0.0) return vC; 
 float vF;   // value at finer level 
 if (x<0.5) { // select left/right subtree 
  vF = evaluate1DRec((x-0.0)*2, level-1.0, l.L, l.R); 
 } else { 
  vF = evaluate1DRec((x-0.5)*2, level-1.0, l.R, r.L); 
 } 
 if (level>=1.0) return vF; 
 return interp(vC, vF, level); // blend two levels 
} 

Next, we eliminate the recursion and generalize the evalua-
tion to an adaptive tree: 

float evaluate1D(Tree root, float x, float level) { 
 Tree l = root.l, r = root.r; 
 float vl = l.val, vr = r.val; 
 float vC = interp(vl, vr, x); // value at current level 
 for (;;) { 
  if (!l && !r) return vC; // early exit if pruned 
  vm = interp(vl, vr, 0.5); // default midpoint value  
  if (x<0.5) { // select left/right subtree 
   x = (x-0.0)*2; l = (l ? l.L : 0); r = (l ? l.R : 0); vr = vm; 
  } else { 
   x = (x-0.5)*2; l = (l ? l.R : 0); r = (r ? r.L : 0); vl = vm; 
  }  
  if (l) vl=l.val; // set values if not pruned 
  if (r) vr=r.val; 
  float vF = interp(vl, vr, x); // value at current level 
  if (level<=1.0)  return interp(vC, vF, level); 
  vC = vF;  level = level-1.0; 
 } 
} 

The generalization of the evaluation procedure to higher 
dimensions is straightforward. 
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Figure 2: Dual-subdivision and primal-subd. trees in 1D.  
In an adaptive tree, pruned nodes (hollow circles) must be 
interpolated from coarser values, and this is more compli-
cated in dual subdivision. 

4. Compressed tree topology 
We now describe our scheme for compressing the topology 
of the tree; Section 5 will address the compression of its 
associated data. 

Terminology.  A tree node with at least one child is an 
internal node; otherwise it is a leaf.  The depth of a node is 
the length of the path to the root, so the root node has depth 
zero.  Level 𝑙 of the tree refers to all nodes at depth 𝑙.  The 
tree height 𝐿 is the maximum level.  A complete tree has all 
its leaves at the same depth, and hence a total of 2𝑑𝐿 leaves.  
In an arbitrary tree, each node may have any number (0 to 
2𝑑) of children.  We focus on full trees, in which all internal 
nodes have a full set of (2𝑑) children.  Note that a complete 
tree is always full, but not conversely. 

4.1 Traditional tree data structures 
We begin by reviewing structures for tree topology.  In the 
simplest case, each node contains a data record and 2𝑑 
pointers to child nodes, any of which can be NULL: 
struct Node { 
 Data data; 
 Node* children[2d];   // NULL if the child is pruned 
}; 

Assuming 32-bit pointers, the tree topology requires 4 ⋅ 2𝑑 
bytes per node, with much wasted space at the leaf nodes. 

Sibling tree.  An improvement for full trees is to allocate 
sibling nodes contiguously (forming a brood), and to store 
a single pointer from the parent to the brood [HW91], thus 
reducing topology encoding to 4 bytes/node: 
struct Node { 
 Data data; 
 Brood* brood;      // pointer to first child, or NULL  
}; 

struct Brood {        // children nodes allocated consecutively 
 Node nodes[2d]; 
}; 

Autumnal tree.  If pointers and data records have the same 
size, an even better scheme is to raise the data from leaf 
nodes into their parents, to form an autumnal tree [FM86].  
Hence the Node structures are only allocated for internal 
nodes.  A single bit identifies if a child is a leaf, and is often 
hidden within the pointer/data field.  Tree topology is 
reduced to 4 ⋅ 2−𝑑 + 1

8�  bytes/node.  For a quadtree, this is 
1.125 bytes/node, much less than the sibling tree. 
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Figure 3: Example of a primal autumnal tree and its 
memory packing.  Dashes denote undefined data values. 

struct PointerOrData { 
 bit leafchild; 
 union { 
  Node* pointer; // if not leafchild 
  Data data; // if leafchild 
 }; 
}; 

struct Node { // only for internal nodes 
 Data data; 
 PointerOrData children[2d];  
}; 

4.2 Encoded local offsets 
Even in an autumnal tree, the pointers remain the limiting 
factor for memory size.  Our contribution is to replace such 
pointers by local offsets.  Hunter and Willis [HW91] 
consider replacing absolute pointers by offsets, but define 
offsets from the start of the tree data structure.  Instead, we 
define offsets locally, such that an offset of zero refers to 
memory just after the current node. 
Starting with an autumnal tree, we replace each absolute 
32-bit pointer by a local scaled offset encoded into 7 bits. 
The tree data values will also be encoded into 7 bits, so that 
the PointerOrData structure fits nicely in one byte. 
We pack the nodes in memory in preorder as shown in 
Figure 3.  At fine levels, parent nodes are close to all of 
their children.  At coarser levels, the children become 
separated by their own subtrees, so the offset from the 
parent to its last child grows.  Our idea is to encode each 
offset 𝑦 into a 7-bit code 𝑥 ∈ [0,127] as 𝑦 = 𝑠𝑙  𝑥 where 𝑠𝑙 
is a per-level scaling parameter.  At finer levels where 
offsets are small, this encoding is wasteless with 𝑠𝑙 = 1.  At 
coarser levels where 𝑠𝑙 > 1, if the desired offsets cannot be 
encoded exactly (i.e. are not a multiple of 𝑠𝑙), we leave 
some padding space between the subtrees. 
We perform the packing in a fine-to-coarse order.  For each 
level, having already packed the finer subtrees into memory 
blocks, we iteratively concatenate these subtree blocks after 
their respective parents such that they are addressable as 
encoded offsets from the parents — leaving padding space 
as needed.  We exhaustively search for the integer scaling 
factor 𝑠𝑙 ∈ {⌈𝑦max 127⁄ ⌉…𝑦max} that gives the best packing 
(where 𝑦max is the largest offset).  Table 1 shows some 
example results. 
Another strategy would be to pack nodes in level-order 
(equivalent to breadth-first search).  However, such order-
ing would give offsets that are larger and less predictable. 

Level 𝑙 Num. nodes Scaling 𝑠𝑙 Padding (bytes) 
0 1 500 58 
1 4 316 354 
2 9 135 897 
3 25 61 960 
4 76 26 1016 
5 202 10 555 
6 486 5 0 
7 1228 1 0 
8 3218 1 0 
9 8322 1 0 

Table 1: Result of offset encoding for the data in Figure 5. 
A forested mipmap replaces tree levels 0-4 (Section 4.3). 

4.3 Forested mipmap 
Maintaining the coarsest levels as a tree structure has a 
number of drawbacks: (1) These levels are usually dense, 
so adaptivity is unnecessary; (2) The traversal of these 
coarse levels adds runtime cost; (3) Much of the padding 
space introduced by our offset encoding occurs there; (4) 
VQ compression is ineffective due to the small number of 
data nodes.  For these reasons, we collapse the coarsest tree 
levels 0..4 to form a (non-adaptive) mipmap pyramid.  At 
the finest of these pyramid levels, we also store a 172 
indirection table with pointers to the resulting clipped 
subtrees.  We call this overall structure a forested mipmap. 
For the same example in Table 1, the forested mipmap 
results in a decrease of 1847 bytes. Overall the tree topolo-
gy requires 0.36 bytes/node for this quadtree. 

5. Compressed tree data 
A benefit of a tree structure 𝑇 is that data at finer levels can 
be predicted from coarser levels [e.g. BA83], in our case by 
simple multilinear interpolation.  In the case of spatially 
coherent data, the residual differences tend to be small.  
Indeed, pruning of subtrees with near-zero residuals already 
offers significant data compression.  In this section, we 
examine how to further compress the data residuals them-
selves. 

5.1 Brood-based vector quantization 
To support efficient random access, we compress the inter-
level residuals using vector quantization.  VQ is an ap-
proach that approximates a set of vectors by a small 
codebook, replacing each vector by an index into the 
codebook [GG92]. 
Specifically, we apply VQ to the blocks of data residuals 
associated with the broods of the tree.  Recall that a brood 
is the set of 2𝑑 children of a parent node.  Each codebook 
index encodes the data residuals for these 2𝑑 data samples.  
We use a codebook of 128 elements: each codebook index 
is 7 bits.  For a complete quadtree, these indices correspond 
to storage of 1.75 bits per data at the finest level, or a total 
of 2.33 bits per data when accounting for all levels. 
Thus, we create a new tree 𝑇′ (which we call a VQ tree) in 
which each node data is a 7-bit codebook index.  Because 
each index encodes a block of residual data, the VQ tree 𝑇′ 
is one level shorter than the original data tree 𝑇.  That is, 
each leaf node in 𝑇′ stores data for 2𝑑 samples in leaves of 
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𝑇.  Our association of a data block per tree node is similar 
to brick maps [CB04], although we store residuals and 
encode the blocks. 
For a single-channel image, each residual vector contains 4 
pixel residuals, and is therefore 4-dimensional.  The 128 
codevectors are a sparse sampling of this 4D space.  (For a 
color image, the codevectors are an even sparser sampling 
of a 12D space.)  Fortunately, there is significant clustering.  
In addition, the VQ tree is able to correct coarse-level 
errors in the finer levels.  Because the tree encodes a 
cascade of small residuals, tree-based VQ yields signifi-
cantly less error than VQ applied to a uniform grid of 
blocks [BAC96], as seen in Figure 13. 
In 2D, we visualize the adaptive primal tree 𝑇′ by outlining 
each node’s Voronoi region, and showing its VQ data as 4 
sub-squares.  This nicely reveals both the tree structure and 
the data resolution. 

Implementation.  We compute a separate codebook at each 
tree level, using 𝑘-means clustering [Llo82], which con-
verges to a local minimum of the summed intra-cluster 
variance.  To help jump out of local minima, we use cluster 
teleportation as in [CAD04]. 
To reduce codebook sizes, we further quantize the codevec-
tor themselves to 8 bits per coordinate, and this is achieved 
as an easy extension to the 𝑘-means clustering algorithm. 
Lastly, at the finest level 𝐿 of the tree, we know that all 
nodes must be leaves.  Therefore we omit the leafchild bit 
and instead use an 8-bit codebook index, together with a 
256-entry codebook.  This helps to improve compression 
accuracy at the finest level. 

5.2 Extension of VQ to undefined data 
As discussed in Section 3.2, subtrees sometimes extend 
beyond the defined domain, so there exist residual blocks 
for which some data values are undefined.  We exploit the 
fact that we don’t care about these residuals to reduce the 
error of the vector quantizer, as follows. 
A not so well known property of 𝑘-means clustering is that 
it can be extended to partially defined data and still pre-
serve its convergence properties [LFWV03].  The standard 
𝑘-means clustering algorithm iterates between (1) assigning 
each vector to the closest cluster point, and (2) updating 
each cluster point as the mean of the vectors assigned to it.  
The generalization for partially defined data is to modify 
these steps to just ignore the undefined components of the 
input vectors, both when computing distances in step 1 and 
the centroid points in step 2. 

5.3 Construction of adaptive VQ tree  
We seek to construct a simplified VQ tree while bounding 
the 𝐿∞ approximation error at all levels to a given threshold 
value 𝜏.  Because VQ compression is lossy, even the 
complete VQ tree may not satisfy the tolerance 𝜏, and in 
that case our goal is to avoid introducing any further such 
errors. 
At a high-level, the construction of the adaptive VQ tree 𝑇′ 
involves three steps: 
(1) Create a complete mipmap tree 𝑇 of desired data values. 

(2) Apply brood-based vector quantization to form a 
complete VQ tree 𝑇′ of compressed residuals. 
(3) Adaptively prune the tree 𝑇′ subject to satisfying 𝜏. 
A useful extension is to reach a desired compression rate 
(e.g. 1.5 bits/pixel) by repeating step (3) using a binary 
search over 𝜏. 
A limitation of this algorithm is that it computes the per-
level VQ codebooks using all block residuals in the com-
plete tree, even though the final simplified tree will only 
contain a subset of these blocks.  However, the effect 
should be minor since the pruned blocks have near-zero 
residuals.  There is actually a complicated inter-dependence 
between the tree structure and the per-level codebooks.  In 
particular, it is not a good idea to recompute new code-
books on the final simplified tree because this could result 
in approximation errors that exceed the tolerance τ. 
We next discuss the 3 steps in more detail. 

Mipmap construction.  In fine-to-coarse order 𝑙 =
𝐿-1 … 0, we compute the desired values 𝑑𝑙  at nodes of level 
𝑙 from those at level 𝑙+1 as a least-squares optimization 
min𝑑𝑙�𝑃𝑙,𝑙+1𝑑𝑙 − 𝑑𝑙+1�

2
 where the rows of matrix 𝑃𝑙,𝑙+1 

contain the multilinear interpolation weights (i.e. 0, 1, or 
powers of 12, for our primal subdivision). 

VQ compression of the complete tree.  We process each 
level 𝑙 = 1 … 𝐿 of the tree in coarse-to-fine order as fol-
lows.  We compute the predicted values 𝑝𝑙 = 𝑃𝑙−1,𝑙𝑎𝑙−1 by 
multilinear interpolation of the approximated values 𝑎𝑙−1 at 
the next-coarser level (with 𝑎0 = 0).  The residuals 
𝑟𝑙 = 𝑑𝑙 − 𝑝𝑙 are compressed using brood-based VQ, result-
ing in compressed residuals �̃�𝑙.  Thus, the approximated 
values are 𝑎𝑙 = 𝑝𝑙 + �̃�𝑙, and we clamp these to the signal 
range which is typically [0,1].  We also compute the signed 
approximation errors 𝑒𝑙 = 𝑎𝑙 − 𝑑𝑙 . 

Adaptive tree pruning.  We process each level 𝑙 =
𝐿-1 … 0 of the VQ tree 𝑇′ in fine-to-coarse order, looking to 
prune its leaves.  The basic idea is to allow simplification 
as long as the accumulated approximation errors at all 
affected nodes in the original tree 𝑇 do not exceed the 
tolerance, i.e. ∀𝑙, ‖𝑒𝑙‖∞ ≤ 𝜏. 
Because autumnal trees are full, the atomic simplification 
operation on 𝑇′ is the removal of all 2𝑑 leaf nodes in a 
brood.  Thus, we need only consider a brood if all its 
subtrees have been pruned.  Since each child in the brood 
(assumed at level 𝑙) contains a codebook index encoding a 
2𝑑 block of data, the simplification operation effectively 
removes a 2𝑑 block of residual values �̃�𝐵 ⊂ �̃�𝑙+1 in level 
𝑙 + 1.  We allow the brood to be removed if the subtraction 
of these residuals does not increase the approximation error 
(at any node in the original tree 𝑇) beyond the tolerance 𝜏.  
Specifically, we compute the updated approximation errors 
𝑒𝑙′ by interpolating the subtracted residuals to each finer 
level 𝑙′ ≥ 𝑙 + 1 as 𝑒𝑙′

′ = 𝑒𝑙′ − 𝑃𝑙′,𝑙+1�̃�𝐵 and check if 
�𝑒𝑙′

′ � ≤ 𝜏. 
Even within a level, the affected subtrees of residual blocks 
�̃�𝐵 for different broods do overlap at their boundaries, so 
we visit the candidate broods in order of increasing residual 
norm ‖�̃�𝐵‖ to hopefully remove more smaller residuals 
than fewer larger ones. 
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5.4 Codebook sharing 
Although codebooks are relatively compact (3 KB for a 
single-channel image), they need to be stored along with 
each image.  On smooth data such as distance fields and 
light maps, we find that data residuals are extremely auto-
similar across levels, so a shared codebook can be reused 
by all tree levels subject to an appropriate scaling factor, 
thus requiring only 1 KB.  Specifically, we construct the 
shared codebook 𝑟𝑆 at the finest level.  Then for each 
coarser level we compute the scaling factor ‖𝑟‖ ‖𝑟𝑆‖⁄   of 
the image residuals relative to the shared codebook, and 
apply this scaling to the codevectors. 
In addition, for a class of images with similar content, we 
can design a universal codebook using a training image 
(Figure 9).  Section 6.3 presents results using a universal 
codebook on distance fields.  However we find that such a 
universal codebook does not extend well to dissimilar light 
maps or color images. 

6. Applications and compression results 
We demonstrate the efficiency of tree-based compression 
on several data types, including light maps, alpha mattes, 
distance fields, and high-dynamic-range images.  Table 2 
summarizes the results.  All examples use forested mip-
maps.  Compression times range from 2 to 10 minutes, 
most of which is spent in VQ optimization.  We manually 
selected target bit-rates; it would be desirable to automate 
this rate selection based on image content. 
We compare memory sizes with BC4U and DXT1 (for 
grayscale and color images respectively) which are both 4 
bits/pixel, as these are widely available representatives of 
block-based compression. The reported memory sizes 
include both the tree and codebook.  We also compare with 
the block-based VQ scheme of [BAC96].  Please refer to 
our supplemental results for additional examples. 
Note that many block-based schemes like BC4U and DXT1 
require storage of separate (compressed) mipmap levels, 
which effectively raises storage cost to 5.33 bits/pixel for a 
full pyramid.  In contrast, our tree representation directly 
includes all mipmap levels. 
Another benefit of trees, which makes direct comparisons 
challenging, is that while the inter-level residuals are 
quantized (to 8 bits), the reconstructed signal is floating-
point and attains greater accuracy at each finer level, as 
demonstrated with the distance function in Section 6.3. 

6.1 Light maps 
Our approach is especially well suited to light maps, as 
they contain both smoothly varying regions and sharp 
shadow boundaries. Figure 4 compares our method to 
BC4U compression which is 4 bits/pixel and has a PSNR 
of 48.8 dB.  As shown in the graph of Figure 6, we reach 
this numerical accuracy at 2.2 bits/pixel.  Moreover, Figure 
4 shows that even at 1 bit/pixel (44.2 dB), our reconstruc-
tion is visually more faithful, with less noise and fewer 
dithering artifacts. 
 

Dataset 
Input Compressed tree BC4U/ 

DXT1 
Beers 

[BAC96] 

Dim. Size 
(KB) 

Size 
(KB) 

Bits/ 
pixel 

PSNR 
(dB) 

PSNR 
(dB) 

PSNR 
(dB) 

Land (lightmap) 10252 1051 135 1.03 44.2 48.8 40.6 
Lady (matte) 10252 1051 139  1.06 52.8 53.0 44.6 
Teapot (dist) 10252 131 8.7 0.07 - - - 
Piggy (HDR) 5132 3158 165 5.00 - - - 
Monkey (matte) 10252 1050 95 0.72 51.2 51.5 43.8 
Bull (dist) 10252 131 7.8 0.06 - - - 
Desk (HDR) 644x874 6754 349 4.96 - - - 
Atlas (lightmap) 10252 3151 269 2.05 49.6 52.5 41.4 
Nefertiti (RGB) 5132 790 65 1.97 37.8 36.3 33.9 
Flowers (RGB) 5132 790 116 3.52 31.0 29.6 28.2 
Table 2: Quantitative results including comparison with 4 
bit/pixel BC4U or DXT1 compression and 2 bit/pixel VQ 
scheme of [BAC96]. 

6.2 Alpha mattes 
Alpha mattes often have only a small fraction of pixels with 
fractional alpha values.  Our adaptive tree nicely skips all 
the solid regions of an alpha map, while precisely reproduc-
ing the smooth transitions between opaque and transparent 
areas.  The alpha matte of Figure 5 is compressed by BC4U 
at 4 bits/pixel with an accuracy of 51.5 dB. We achieve a 
similar result at only 0.7 bits/pixel (see Figure 6). 
 

   
Close-up of original 

(8 bpp) 
Tree-compressed 

(1 bpp) 
BC4U-compressed 

(4 bpp) 
Figure 4: Close-up on the light map of Figure 1. 

  
Input alpha matte (10252) Adaptive tree T′ 

  
Close-ups of input Close-ups of compressed 

Figure 5:Compression of alpha matte (0.7 bpp;51.2 dB) 
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Figure 6: Rate-distortion curve for the light map and alpha 
matte examples.  Isolated dots represent compression 
results with DXT1, BC4U, and [BAC96]. 

6.3 Adaptively sampled distance fields 
Adaptively sampled distance fields are an elegant represen-
tation for vector outlines and 3D shapes [FPRJ00].  When 
applying tree compression to such a distance field, we are 
mainly interested in the shape of its zero set, so we modify 
the criterion used in the adaptive tree simplification.  We let 
the tolerance τ be larger, but restrict the simplification to 
preserve the sign of the approximated data al everywhere. 
Our scheme precisely and compactly encodes complex 
vector outlines.  In the example of Figure 8, the compressed 
tree is 7.8 KB while the original parametric vector repre-
sentation (with quadratic Bezier segments) is 3.2 KB.  And, 
this result is obtained using a universal codebook trained on 
the image in Figure 9. 
To measure the accuracy of our representation, we extract 
the zero isocurve of the compressed distance field, and 
measure the RMS distance between points on this curve 
and the original curve.  The geometric PSNR is a remarka-
bly high 82 dB, i.e. the error is not visible if the shape is 
rasterized at a resolution less than 10K2 pixels.  Moreover, 
the distance representation permits high-quality antialiasing 
and magnification (Figure 8f-g), which would not be 
possible using a traditional binary image. 
Figure 7 shows that a traditional binary-valued tree is much 
larger as it cannot exploit the smoothness of the vector 
outline, and hence requires more refinement. 
 

  
Traditional binary-valued tree Tree-compressed distance field 

Figure 7: A traditional quadtree on the binary image is 
much more refined than our tree compression of the dis-
tance field.  (Both perfectly reproduce Figure 8a rasterized 
at 10252 resolution.) 

   
(a) Input vector shape (b) Distance field (c) Adaptive tree 

   
(d) Tree-compressed 

distance 
(e) Thresholding  

using (d) 
(f) Antialiasing 

using (d) 

  
(g) Thresholding on magnification of binary image and (d) resp. 

Figure 8: Representation of a vector shape (3.2KB) as a 
signed-distance field at 10252 resolution using a randomly 
accessible compressed tree (7.8KB), and its benefits for 
resolution-independent antialiasing and magnification. A 
binary image would require 131KB and would not magnify 
as a smooth shape outline as shown in (g). 

   
Training image Using specialized codeb. 

(24.4KB, PSNR 79.2dB) 
Using universal codeb. 
(21.2KB, PSNR 79.2dB) 

Figure 9: Training data used for universal codebook on 
distance fields, with negligible deterioration in resulting 
coding quality.  PSNR numbers measure the geometric 
accuracy of the outline curves. 

6.4 High-dynamic-range images 
Munkberg et al [MCHA06] and Roimela et al [RAI06] 
present DXT-like compression schemes for HDR images, 
using a luminance-hue factorization.  Our idea is to capture 
the high-dynamic range variations using an aggressively 
compressed tree and to rely on an ordinary low-dynamic 
image to encode the remaining detail. 
Specifically, we apply tree compression to the log(RGB) 
image to capture the HDR variation at only 1 bit/pixel.  The 
benefit of encoding all 3 color channels rather than just 
luminance is that we reduce subsequent hue quantization 
artifacts. Then we subtract the compressed log(RGB) signal 
from the original log(RGB) image to create a low-dynamic-
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range detail image, and quantize its channels (separately) to 
8 bits.  We compress this quantized detail image using 
ordinary DXT1 compression in 4 bits/pixel (Figure 12e). 
The overall representation uses 5 bits/pixel and compares 
favorably with the earlier result of [MCHA06] at 8 
bits/pixel.  We report rms errors in log2(RGB) space as in 
[XPH05].  Our tree-compressed result has few color quan-
tization artifacts, even at extreme exposure levels. 

6.5 Texture atlases 
Texture atlases often contain charts separated by unused 
space (Figure 10).  Our compressed tree ignores these 
undefined regions in two ways.  First, the tree structure is 
adaptively pruned.  Second, thanks to our sparse VQ 
approach (Section 5.2), the codebook quality is not impact-
ed by the boundaries between the defined and undefined 
areas. 
We modify the compression algorithm as follows.  First, we 
extrapolate data outside the chart boundaries with a pull-
push step [SSGH01].  We use this new image to compute 
the mipmap of desired values.  Second, we remove from 
the mipmap tree 𝑇 all sub-trees covering empty regions; the 
tree is no longer complete, and some residual blocks now 
contain undefined data values.  This is handled by our 
modified VQ as described Section 5.2. 

   
Original atlas 

(black is unused) 
Tree-compressed  

(2.05 bpp; 49.6 dB) 
Adaptive tree 𝑇′  

(close-up) 
Figure 10: Multi-chart texture atlas compression. Unused 
regions are omitted from the tree and ignored by VQ. 

6.6 Limitation: color images 
Tree compression can also be applied to color images.  It is 
most effective on images with large smooth areas, such as 
in Figure 13 where we obtain a 2X memory savings com-
pared to DXT1 compression, with slightly higher accuracy. 
However, on more common images with uniform high-
frequency detail, the resulting tree becomes too dense to be 
a significant benefit over traditional block-based approach-
es, as shown in Figure 11. 

  
Adaptive tree T′ (close-up) Tree-compr. (3.52 bpp; 31 dB) 

Figure 11: Uniformly distributed detail creates a near-
complete tree, which is not our desired scenario. 

  
(a) Input (644×874) close-up (b) Log-RGB of (a) 

  
(c) Adaptive tree on (b) (d) Tree-compression of (b) 

  
(e) Detail (b minus d) (DXT1) (f) Final image using (d) and (e) 

 
Input HDR image (close-up at 3 different exposures) 

 
Tree-compressed HDR image (4.96 bpp; log2(RGB) rmse = 0.19) 

 
  Original  Our result   [MCHA06] Original  Our result [MCHA06] 

Comparison with Munkberg et al [MCHA06] 

Figure 12: For an HDR image, aggressive tree compres-
sion in log(RGB) space (at 1 bit/pixel), with remaining 
detail represented as a low-dynamic-range DXT1 image (4 
bits/pixel).  In comparison, Munkberg et al [MCHA06] 
report rmse=0.25 at 8 bits/pixel. 
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Input image (5132) Close-up of adaptive tree T′ 

    
Close-ups of input Tree-compr. (1.97 bpp; 37.8 dB) 

    
DXT1-compr. (4 bpp; 36.3 dB) [BAC96] (2 bpp; 33.9 dB) 

Figure 13: Compression of a relatively smooth color 
image, compared with DXT1 compression and with uniform 
2×2 block VQ using a 256-entry codebook. 

7. Tree evaluation 
Our decompression scheme is easy to implement on a CPU.  
The following is pseudocode for trilinear evaluation at a 
point 𝑥 and mipmap level 𝑙: 
value Evaluate(point 𝑥, float 𝑙) { 
 If 𝑙 ≤ 4, 
  return trilinearly filtered value from mipmap. 
 Identify the square cell containing 𝑥 at level 4 
  (i.e. the starting level for trees in the forested mipmap). 
 For each of the four corners of this cell: 
  retrieve the root node address and value. 
 Re-express point 𝑥 in the cell’s local coordinates. 
 Loop: 
  At point 𝑥, bilinearly interpolate the four node values.
   If --𝑙 < 1 or all four node addresses are NULL, 
   return value at 𝑥 lerp’ed with that in prior level using 𝑙.
   Set the new cell as the quadrant containing point 𝑥. 
  For each of the four new cell corners: 
   Predict the new node value using bilinear interpolation. 
   If the node parent address is non-NULL, 
    Access the VQ codebook to add the residual value. 
    Update the node address to the appropriate child. 
  Re-express point 𝑥 in the new cell’s coordinates. 
} 

Due to the tree adaptivity and the collapse of coarsest levels 
into a forested mipmap, the number of tree levels traversed 
in the loop is relatively low on average, as shown in the 
rightmost column of Table 4. 
We have also implemented the evaluation procedure within 
a GPU pixel program.  DirectX 10 enables unfiltered access 
to 1D memory buffers with a maximum size of 128 MB.  
This linear memory layout enables better caching behavior 
than the complex addressing resulting from unfolding the 
tree in a 2D texture.  Integer arithmetic lets us decode the 

data structure efficiently.  The image decompression shader 
compiles to 298 instructions.  On a GeForce 8800 GTX, we 
render the images at their original resolutions with full 
filtering enabled.  The decompression rates, shown in Table 
3, are about 20X slower than the DXT1/BC4U schemes.  
But of course, these block-based decompression schemes 
benefit from specialized hardware in the GPU, and the 
texture caching and filtering system have been optimized 
for their use.  We analyze possible caching strategies in the 
next section.  Even without assistance from specialized 
hardware, our scheme allows real-time rendering when 
decompressing a screen-sized texture. 

Dataset Frames/sec Dataset Frames/sec 
Land (lightmap) 48 Bull (dist) 122 
Lady (matte) 60 Ennis (HDR) 34 
Teapot (dist) 115 Atlas (lightmap) 47 
Desk (HDR) 64 Nefertiti (RGB) 207 
Monkey (matte) 82 Flowers (RGB) 189 
Table 3: Current rendering performance on the GPU. 

8. Analysis and discussion 
Benefits of tree structure.  Data coherence generally 
permits a very adaptive hierarchy.  In particular, note the 
representation of the signed distance function in Figure 8, 
where the adaptive tree is able to represent the smooth 
function at a coarse resolution, yet still capture its localized 
fine detail (such as sharp corners) at fine resolution.  Also, 
our scheme supports floating point signals at no additional 
cost, as exploited in the HDR application. 
Bandwidth analysis.  An important consideration in any 
compression scheme is the memory bandwidth necessary to 
decode samples under typical texture access patterns.  
Indeed, as processors continue to integrate more computa-
tional cores, bandwidth becomes the likely bottleneck.  
Although our hierarchical compression involves several 
memory accesses (up to 8 at each resolution level in the 
worst case), most of these accesses are temporally coherent 
and can therefore be intercepted on-chip.  In this section we 
explore two such bandwidth reduction strategies, which can 
be used separately or together: 
• Cache of multiresolution nodes. We introduce a cache 

indexed by the parent address and child index (0..3), 
which returns the child node address and its float value.  
(Addresses refer to locations within the memory buffer.)  
We assume a fully associative cache with LRU replace-
ment as in [IM06]. We find that a cache of 256 entries is 
already very effective. Each entry requires 12 bytes for 
grayscale signals, so the cache occupies only 3KB. 

• Buffering of the last query.  We store the multiresolution 
samples used by the last sample evaluation, i.e. a stack 
of cells, each holding an (𝑥,𝑦) location, 4 data values, 
and 4 memory buffer addresses.  For a grayscale image, 
a 6-level stack needs 216 bytes.  Given a query point, we 
iterate through the stack levels fine-to-coarse until the 
point lies within the buffered cell, and then begin the 
coarse-to-fine tree evaluation algorithm as before.  Con-
sequently we avoid traversing the tree from its root if 
intermediate resolutions are already buffered, and there-
by reduce computation in addition to bandwidth. 
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We have performed a set of simulations using these two 
bandwidth reduction strategies.  Using the 10252 light map 
of Figure 1, we simulate a Morton (Z-order) texture-space 
traversal, as would be typical in a rasterization pass, as well 
as scanline traversal.  We also simulate texture mapping the 
atlas of Figure 10 onto the mesh in Figure 15, with Morton 
order in screen-space.  In both cases, the  256-entry code-
book is small (1 KB) and we assume that it is loaded into 
an on-chip buffer. 
Table 4 and Table 5 summarize the simulation results.  For 
the light map, the compressed data size is 135.3 KB, or 10 
times smaller than the uncompressed mipmap pyramid.  
Accessing this compressed data without any caching results 
in a memory bandwidth of 25807 KB, which is significant-
ly larger than even the original uncompressed data (1052 
KB).  For the Morton ordering, introducing the 3KB node 
cache and the last-query buffer reduces bandwidth to 147 
KB, which is only 1.1 times the compressed memory 
representation.  Figure 14  graphs bandwidth as a function 
of total cache size for this Morton traversal.  With a suffi-
ciently large node cache, the last-query buffer does not 
affect bandwidth, but does significantly reduce computa-
tion.  For the atlas access in Table 5, the bit rate is less than 
the compressed representation due to mipmapping. 
Large datasets.  Our current tree construction procedure 
(Section 5.3) creates a complete tree before adaptively 
pruning it, and thus does not scale well to large images. 
However, it should be possible as future work to alter the 
algorithm to more concisely compute accumulated errors. 
The runtime representation should scale to larger textures. 
Of course, a practical alternative is a tiling structure. 

Scheme Bits/pixel Average 
number 
levels 

traversed 

Uncompressed image 
Image with its mipmap pyramid 

8 
10.7 

Compressed representation 1.03 
Morton order: tree evaluation 190.6 4.8 
 with multiresolution node cache 1.1 4.8 
 with buffering of last query 3.7 0.4 
 with both cache and buffering 1.1 0.4 
Scanline order: tree evaluation 190.6 4.8 
 with multiresolution node cache 9.6 4.8 
 with buffering of last query 19.2 0.98 
 with both cache and buffering 9.8 0.98 

Table 4: Analysis of memory bandwidth cost to evaluate 
the tree-compressed 10252 light map of Figure 1, without 
and with our two bandwidth reduction strategies. 

Scheme Bits/pixel Average 
number 
levels 

traversed 

Uncompressed image 
Image with its mipmap pyramid 

8 
10.7 

Compressed representation 2.05 
Atlas access: tree evaluation 270.7 4.8 
 with multiresolution node cache 1.8 4.8 
 with buffering of last query 44.7 0.92 
 with both cache and buffering 1.8 0.92 

Table 5: Memory bandwidth for texturing the mesh of 
Figure 15 with the atlas of Figure 10. 
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Figure 14: Bandwidth as function of total cache size 
(including node caching and/or last-query buffer). 

 

 
Figure 15: Viewpoint used for bandwidth measurements on 
the atlas of Figure 10. 

9. Summary and future work 
We have introduced a framework for compressing adaptive 
hierarchies using a compact randomly-accessible tree 
structure.  Such a tree provides a natural continuous mip-
map interpolation structure, and we have a shown that this 
interpolation is achieved most efficiently using a primal 
subdivision structure. 
Some avenues for future work include: 
• Dynamic loading and unloading of subtrees for large 

data, exploiting local offsets to allow data relocation. 
• Use of the quadtree construction of Ziegler et al 

[ZDTS07] for dynamic compression on the GPU. 
• Application of the tree structure to octree textures, where 

sparse VQ will be especially advantageous. 
• Use of tree-compressed 3D distance fields for real-time 

collision detection. 
• Generalization of the tree structure to a directed acyclic 

graph, for representation of tiled texture patterns. 
• Architectural designs for hardware implementation. 
• Runtime tree updates for incremental data changes. 
• Improved tree compression using perceptual metrics. 

10. Acknowledgments 
We thank Hanan Samet for pointing us in the direction of 
autumnal trees, Nick Apostoloff and Jue Wang for the 
alpha-matte data. The textured model used in Figure 10 and 
Figure 15 is from the MIT CSAIL database. The HDR 
image of Figure 1 is courtesy of Roimela et al [RAI06]. 
The HDR image of Figure 12 is from OpenEXR. 



 S. Lefebvre & H. Hoppe / Compressed Random-Access Trees for Spatially Coherent Data   

© The Eurographics Association 2007. 

11. References 
[BAC96] BEERS A., AGRAWALA M., CHADDHA N.  1996.  

Rendering from compressed textures.  ACM SIGGRAPH. 
[BD02]   BENSON D., DAVIS J.  2002.  Octree textures.  ACM 

SIGGRAPH, 785-790. 
[Bly06]   BLYTHE D.  2006.  The Direct3D 10 system.  ACM 

SIGGRAPH, 724-734. 
[BWK02]  BOTSCH M., WIRATANAYA A., KOBBELT L.  2002.  

Efficient high quality rendering of point sampled geometry.  
Eurographics Workshop on Rendering, 53-64. 

[BA83] BURT P.,  ADELSON E.  1983.  The Laplacian pyramid 
as a compact image code.  IEEE Trans. on Comm. 31(4), 
532-540. 

[CCG96] CHADDHA N., CHOU P., GRAY R.  1996.  Constrained 
and recursive hierarchical table-lookup vector quantization.  
IEEE Data Compression Conference. 

[CB04] CHRISTENSEN P., BATALI D.  2004.  An irradiance atlas 
for global illumination in complex production scenes.  Eu-
rographics Symposium on Rendering. 

[CAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.  2004.  
Variational shape approximation.  ACM SIGGRAPH, 905-
914. 

[DGPR02]  DEBRY D., GIBBS J., PETTY D., ROBINS N.  2002.  
Painting and rendering on unparameterized models.  ACM 
SIGGRAPH, 763-768. 

[FM86] FABBRINI F., MONTANI C.  1986.  Autumnal quadtrees.  
The Computer Journal, 29(5), 472-474. 

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K., GREEN-
BERG D.  2001.  Adaptive shadow maps.  ACM SIGGRAPH, 
387-390. 

[FPRJ00] FRISKEN S., PERRY R., ROCKWOOD A., JONES T.  
2000.  Adaptively sampled distance fields: A general repre-
sentation of shape for computer graphics.  ACM SIGGRAPH, 
249-254. 

[Gar82] GARGANTINI I.  1982.  An effective way to represent 
quadtrees.  Communications of the ACM, 25(12), 905-910. 

[GG92] GERSHO A., GRAY R.  1992.  Vector quantization and 
signal compression. Kluwer Academic Publishers, Boston. 

[GS84] GERSHO A., SHOHAM Y.  1984.  Hierarchical vector 
quantization of speech with dynamic codebook allocation.  
ICASSP, 9(1), 416-419. 

[GW91] GOLDBERG M., WANG L.  1991.  Comparative per-
formance of pyramid data structures for progressive image 
transmission.  IEEE Trans. on Comm. 39(4). 

[Hec90] HECKBERT P.  1990.  Adaptive radiosity textures for 
bidirectional ray tracing.  ACM SIGGRAPH, 145-154. 

[HG88] HO Y-S., GERSHO A.  1988.  Variable-rate multi-stage 
vector quantization for image coding.  IEEE ICASSP, 1156-
1159. 

[HW91] HUNTER A., WILLIS P.  1991.  Classification of quad-
encoding techniques.  Eurographics Conference. 

[IM06] INADA T., MCCOOL M.  2006.  Compressed lossless 
texture representation and caching. Graphics Hardware, 111-
120. 

[Kno80] KNOWLTON K.  1980.  Progressive transmission of 
grey-scale and binary pictures by simple, efficient, and loss-
less encoding schemes.  Proceedings of IEEE. 

[KE02] KRAUS M., ERTL T.  2002.  Adaptive texture maps.  
Graphics Hardware, 7-15. 

[LH06] LEFEBVRE S., HOPPE H.  2006.  Perfect spatial hash-
ing.  ACM SIGGRAPH, 579-588. 

[LKS*06] LEFOHN A., KNISS J., STRZODKA R., SENGUPTA S., 
OWENS J.  2006.  Glift: Generic, efficient, random-access 
GPU data structures.  ACM TOG, 25(1). 

[LFWV03] LENDASSE A., FRANCOIS D., WERTZ V., VERLEY-
SEN M.  2003.  Nonlinear time series prediction by weighted 
vector quantization.  ICCS, 417-426. 

[Llo82] LLOYD S.  1982.  Least squares quantization in PCM.  
IEEE Transactions on Information Theory 28(2). 

[MB98] MCCABE D., BROTHERS J.  1998.  DirectX 6 texture 
map compression.  Game Developer, 42-46. 

[MCHA06] MUNKBERG J., CLARBERG P., HASSELGREN J., 
AKENINE-MÖLLER T.  2006.  High dynamic range texture 
compression for graphics hardware.  ACM SIGGRAPH. 

[NH92] NING P.,  HESSELINK L.  1992.  Vector quantization for 
volume rendering.  Workshop on Volume Visualization, 69-
74. 

[RAI06] ROIMELA K., AARNIO T., ITÄRANTA J.  2006.  High 
dynamic range texture compression.  ACM SIGGRAPH. 

[RL01] RUSINKIEWICZ S., LEVOY M.  2001.  QSplat: A multi-
resolution point rendering system for large meshes.  ACM 
SIGGRAPH, 343-352. 

[Sam85] SAMET H.  1985.  Data structures for quadtree ap-
proximation and compression.  CACM 28(9), 973-993. 

[Sam06] SAMET H.  2006.  Foundations of multidimensional 
and metric data structures.  Morgan Kaufman. 

[SSGH01] SANDER P., SNYDER J., GORTLER S., HOPPE H.  
2001.  Texture mapping progressive meshes.  ACM SIG-
GRAPH, 409-416. 

[SK01] SAUPE D., KUSKA J.-P.  2001.  Compression of isosur-
faces for structured volumes.  VMV, 471-476. 

[SW03] SCHNEIDER J., WESTERMANN R.  2003.  Compression 
domain volume rendering.  IEEE Visualization, 39. 

[Sha93] SHAPIRO J.  1993.  Embedded image coding using 
zerotrees of wavelet coefficients.  IEEE Trans. on Signal 
Processing, 41(12), 3445-3462. 

[SA05] STRÖM J., AKENINE-MÖLLER T.  2005.  iPACKMAN: 
High-quality, low-complexity texture compression for mo-
bile phones.  ACM Graphics Hardware, 63-70. 

[TS00] TZOVARAS D., STRINTZIS M.  2000.  Optimal construc-
tion of reduced pyramids for lossless and progressive image 
coding.  IEEE TCS, 47(4), 332-348. 

[VG88] VAISEY J., GERSHO A.  1988.  Variable rate image 
coding using quad-trees and vector quantization.  EURASIP. 

[Woo84] WOODWARK J.  1984.  Compressed quad trees.  The 
Computer Journal, 27(3), 225-229. 

[XPH05] XU R., PATTANAIK S., HUGHES C.  2005.  High-
dynamic-range still-image encoding in JPEG 2000.   IEEE 
CG&A 25(6), 57-64. 

[YFT80] YAMADA Y., FUJITA K., TAZAKI S.  1980.  Vector 
quantization of video signals.  Proceedings of IECE. 

[ZDTS07] ZIEGLER G., DIMITROV R., THEOBALT C., SEIDEL 
H.P. 2007. Real-time Quadtree Analysis using HistoPyra-
mids. IS&T and SPIE Conference on Electronic Imaging. 

[ZS01] ZORIN D., SCHRÖDER P.  2001.  A unified framework 
for primal/dual quadrilateral subdivision schemes. CAGD, 
18(5), 429-454. 


	1. Introduction
	2. Related work
	3. Primal subdivision for efficient interpolation
	3.1 Traditional dual subdivision
	3.2 Our primal subdivision approach

	4. Compressed tree topology
	4.1 Traditional tree data structures
	4.2 Encoded local offsets
	4.3 Forested mipmap

	5. Compressed tree data
	5.1 Brood-based vector quantization
	5.2 Extension of VQ to undefined data
	5.3 Construction of adaptive VQ tree 
	5.4 Codebook sharing

	6. Applications and compression results
	6.1 Light maps
	6.2 Alpha mattes
	6.3 Adaptively sampled distance fields
	6.4 High-dynamic-range images
	6.5 Texture atlases
	6.6 Limitation: color images

	7. Tree evaluation
	8. Analysis and discussion
	9. Summary and future work
	10. Acknowledgments
	11. References

