
TTexel Programs forr Random-Access Antialiased Vectoor Graphics (Microosoft Research Tecchnical Report MSSR-TR-2007-95, Juuly 2007) Page 1 of 9

A
W
ib
c
o
p
s
a
g
W
s
e

K

1
V
o
m
M
e
r
b
a
In
a
S
s
H
ti
d
A
s

Tex

Figure 1: Within
rendering of gen

Abstract
We encode a bro
ble format. Our

cell contains a te
of the graphics
programs are int
shader. Advant
access, efficient i
general vector gr
We present a fa
space and time e
examples.

Keywords: scalab

1. Introducti
Vector graphics
often used for sy
maps. Common
Metafile (WMF)
evaluating an in
equires traversin

by rasterizing eac
algorithm.
n contrast, raster

at any point by
Such random acc
surfaces, and pe
However, image
inuities such as

discontinuity, im
As reviewed in
sharp outlines wi

el Progra

n each cell of a c
neral vector grap

oad class of vect
r approach is to c
exel program —

primitives ove
terpreted at runti
tages include c
inter-primitive a
raphics (includin
ast construction
efficiency of the

ble vector graphics

ion
including filled

ymbolic informat
formats include
), and scalable v
ndividual pixel
ng all its primitiv
ch primitive in a

r images offer e
simple filtering

cess lets images
ermits efficient
s do not accurat
symbolic outlin

mage magnificatio
Section 2, recen
ithin raster imag

ams for R

Pr

coarse grid, a tex
phics over arbitr

tor graphics in a
create a coarse g

— a locally speci
erlapping the ce
ime within a pro

coherent low-ba
antialiasing, and
ng strokes) onto

algorithm, and
 representation o

, texture mapping.

d shapes and st
tion such as text
Adobe Acrobat

vector graphics
within a vecto

ves, the object is
a framebuffer, e.

efficient random-
g of a local pix
be texture-mapp
magnification

tely represent sh
nes. Thus, as o
on reveals a blur
nt vector image
ges by adding to

Random-A
Diego Nehab
rinceton Universi

xel program enc
rary surfaces, as

randomly acces
grid in which eac
ialized descriptio
ell. These tex
ogrammable pix

andwidth memo
the ability to ma
arbitrary surface

d demonstrate th
on many practic

.

troke outlines a
t, illustrations, an
t (PDF), Window
(SVG). Becau
r graphics obje
s usually rendere
.g. with a scanlin

-access evaluatio
xel neighborhoo
ped onto arbitra
and minificatio

harp color disco
ne zooms in on
rred boundary.
 schemes suppo
each pixel a loc

Access A
b Hugu
ity Micros

odes several lay
well as efficient

ss-
ch
on
xel
xel
ry
ap
es.
he
cal

are
nd
ws
use
ect
ed
ne

on
od.
ary
on.
on-
n a

ort
cal

approx
domain
interpo
Instead
compo
often in
when r
Our ap
general
outline
in whi
special
variabl
evaluat
The co
number
plexity
Moreov
comple
of unifo
We sho
locally
like cli
unique
the grap
Benefit
coheren
of the i
would
scattere
string o
shader
write p
should
interest
ing [Pe
Anothe
provide
we dir
surface

Antialiase
ues Hoppe
soft Research

yers of locally sp
t antialiasing.

ximation of the
n is partitioned
olation is disable
d, our aim is to
sed of layered
nclude thin strok
epresented as re
pproach. We d
l vector graphic
d shapes. Our k
ich each grid c
lized to that ce
e-length string
ted within a pro
omplexity of th
r of vector prim

y can be arbitra
ver, processing
exity (subject to
form color are re
ow that traditio
specialized texe

ipping algorithm
aspect of the alg
phics primitives
ts. One key a
ntly encapsulate
image. Whereas
read a stream

ed updates to th
of specialized pr
(albeit with sign

per pixel. Such
become advan

ting analogy is t
eercy et al. 2000]
er benefit is effi
e a (conservativ
rectly evaluate
e in a single ren

ed Vector

pecialized graphi

outline geome
d into regions,
d across these en
o directly mode
overlapping pr

kes that cannot
gions within vec

develop a random
s with arbitrary
key idea is to co
cell contains a
ell. This local

of tokens — a
ogrammable pixe
e texel program

mitives overlappi
ary and is only
time in the pixe
local SIMD par
ndered quickly.

onal vector grap
el programs usin
m followed by a
gorithm is that it

s to update all aff
advantage of te
e all the data inv
s conventional v

m of primitives
he framebuffer,
rimitives, combi
nificant computa
h low-bandwidth

ntageous in man
the transition fro
] to single-pass c
cient antialiasin

ve) list of primit
an antialiased p

ndering pass, wi

Graphics

ics primitives, to

etry. In effect,
and convention

ncoded region ou
el general vecto
rimitives. Such
be conveniently

ctor images.
m-access repres
colored layers o

onstruct a coarse
local graphics
description is

a texel program
el shader at rend

m is directly rel
ing the cell, and
introduced wh

el shader also ad
allelism), so that

phics can be con
ng an efficient ra
a simple planar
t makes a single

ffected cells.
exel programs i
volved in renderi
vector graphics r

and perform
 we instead cac
ne the primitive
ation), and perfo
h coherent mem
ny-core architec
om multi-pass s
complex shading

ng. Because tex
tives overlappin
pixel color for
ithout resorting

s

o enable

, the image
nal bilinear
utlines.
or graphics,
h primitives
y antialiased

sentation for
of filled and
e image grid

description
stored as a

m — that is
dering time.
lated to the
d thus com-

here needed.
dapts to this
t large areas

nverted into
asterization-
r sweep. A
e traversal of

is that they
ing a region
rasterization
overlapping
che a small

es within the
orm a single
mory access
ctures. (An
simple shad-
g.)
el programs

ng the pixel,
the current
to A-buffer

Texel Programs for Random-Access Antialiased Vector Graphics (Microsoft Research Technical Report MSR-TR-2007-95, July 2007) Page 2 of 9

fragment lists [Carpenter 1984]. Although inter-primitive anti-
aliasing adds computational cost, it involves no extra memory
access. Moreover, there is opportunity to spatially adapt the
supersampling density to local geometric complexity, e.g. falling
back to a single sample per pixel in regions of constant color.
Texel programs also inherit advantages demonstrated previously
in vector images. The geometric primitives stored in texel pro-
grams can use lower-precision (e.g. 8-bit) cell-local coordinates.
And, since the vector graphics are evaluated entirely in the shader,
they can be mapped onto general surfaces just like texture images.
Limitations:
• Cell-based specialization assumes a static layout of graphics

primitives in the domain, although the construction is fast;
• The description of each vector path segment is replicated in all

cells over which it overlaps, but this storage overhead is often
small since segments typically have small spatial extent;

• All cells in the interior of a filled shape must include the shape
color, just as in an ordinary image; on the other hand, there is
no need to store a triangulation of the shape;

• The current implementation supports only a subset of SVG, e.g.
no stylized strokes, gradient fills, or instancing of glyphs;

• Filtered minification requires an ordinary mipmap, but this is
true of all other approaches;

• Antialiasing considers all vector graphics primitives rendered
onto the current surface, but does not address inter-surface an-
tialiasing such as silhouettes.

Because the cell descriptions have variable sizes, we use an
indirection scheme to compact the data. We explore compaction
strategies based on indirection tables and perfect spatial hashes.
Main contributions:
• Texel programs for spatially specialized vector graphics;
• Fast construction using path rasterization and a simple sweep;
• Fast computation of approximate distance to a quadratic curve;
• Single-pass, spatially adaptive inter-primitive antialiasing.

2. Related work
Vector images incorporate sharp outlines within a color image by
encoding extra information in its pixels. Most schemes enforce a
bound on the outline complexity within each image cell, such as
two line segments [Sen et al. 2003, 2004; Tumblin and Choud-
hury 2004; Lefebvre and Hoppe 2006], an implicit bilinear curve
[Tarini and Cignoni 2005; Loviscach 2005], a parametric cubic
curve [Ray et al. 2005], or 2–4 corner features [Qin et al. 2006].
A drawback of fixed-complexity cells is that small areas of high
detail (such as serifs on a font glyph or cities on a map) require
fine cell grids, which globally increases storage cost. A quadtree
structure can provide nice adaptivity [Frisken et al. 2000], but still
limits the number of primitives at the leaf nodes. In contrast, the
feature-based textures of Ramanarayanan et al. [2004] can store
arbitrary lists of path discontinuities in each texel. These discon-
tinuities partition the texels into regions, and traditional bilinear
interpolation is overridden based on precomputed region masks.
Most prior schemes consider only a single layer of non-
overlapping vector primitives. A generalization explored by Ray
et al. [2005] is to construct a compositing hierarchy of several
vector images. However, on general graphics models such as the
examples in this paper, a global compositing hierarchy becomes
overly complex and its cost applies uniformly to all pixels. In
essence, our scheme adaptively simplifies this hierarchy per cell.

Like the approach of Ramanarayanan et al. [2004], we also store
variable-length descriptions within each grid cell. However,
rather than maintaining compatibility with a raster image, we
instead focus on encoding general vector graphics, including thin
stroke primitives that cannot be represented as regions. We also
model multiple semitransparent graphics layers, and compute
distances for antialiasing. Finally, we design our data structure to
encapsulate each cell description into a concise token string that
can be efficiently parsed within a shader.
Similar to Frisken et al. [2000] and Qin et al. [2006], our repre-
sentation lets us compute signed distance to the shape primitives,
which permits screen-space antialiasing. While Frisken et al. use
a multilinear implicit approximant, and Qin et al. record oriented
corner features, we recover signed distance by storing paths of
segments and performing ray intersection testing. A unique
aspect of our scheme is the runtime computation of a winding
number to allow filling of self-intersecting paths. Also, paths let
us represent corners accurately without any special processing.

3. Vector graphics representation
Our vector graphics representation is very similar to that of
Postscript or SVG. The basic shape primitive is a path consisting
of linear and/or quadratic segments specified by a sequence of 2D
points. Each point has one of four possible tags: moveto, drawto,
curvepoint, or last, as shown by this example:

A-moveto,
B-drawto,
C-drawto,
D-curvepoint,
E-drawto,
F-drawto,
G-moveto,
H-last

{

}
A

B
C

D

E
F

G
H

For vector graphics containing cubic curve segments, we adap-
tively approximate these using one or more quadratic segments.
A layer associates a rendering state to the path, including whether
it is stroked and/or filled, its color, and stroke width. A filled path
must be closed; we define its interior using a winding rule, which
is even-odd by default. The overall vector graphics consists of a
back-to-front ordered list of such layers.

4. Pixel-based rendering evaluation
Most rendering algorithms for vector graphics objects traverse the
graphics primitives sequentially, rasterizing each one over a
framebuffer. Instead, for our random-access strategy, we must
design an algorithm to directly evaluate color at any given point,
as requested by a pixel shader program.
The basic approach is to compute the color (including alpha)
contributed by each graphics layer at the current pixel and to
composite these colors in back-to-front order. A more advanced
algorithm for antialiasing primitives across layers is described in
Section 6.
For each layer, we seek (1) the absolute distance from the pixel to
the path, and (2) for filled shapes whether the pixel is in the path
interior. The distance to the path is found simply as the minimum
distance to the segments of the path. To determine if the pixel lies
in the path interior, we compute the winding number by shooting
a ray from the pixel to the right (+𝑥) in texture space and sum-
ming the signed intersections with the oriented path segments, as
illustrated in Figure 2 (see [Foley et al. 1990]). We convert the
absolute distance to a signed distance using the even-odd winding
number rule.

Texel Programs for Random-Access Antialiased Vector Graphics (Microsoft Research Technical Report MSR-TR-2007-95, July 2007) Page 3 of 9

00

11 00

22
00

--11
00

--11 ++11
++11

++11 ++11

++11--11

--11
--11 ++11

Figure 2: Winding numbers as sums of oriented intersections.

The overall rendering algorithm can be summarized as follows:
Initialize the pixel color. // e.g. white or transparent
for (each layer) { // ordered back-to-front
 Initialize the cell winding number to 0.
 for (each segment in layer) {
 Shoot ray from pixel through segment,
 and update running sum of winding number.
 Compute absolute distance to segment,
 and update mininum absolute distance.
 }
 Assign sign to distance using winding number.
 if (fill) Blend fill color based on signed distance.
 if (stroke) Blend stroke color based on distance.
}

4.1 Linear segments
Given a pixel 𝑝 and linear segments {(𝑏ଵ, 𝑏ଶ), (𝑏ଶ, 𝑏ଷ), … }, we
compute the signed distance 𝑑 as follows (refer to Figure 3a). For
each segmen 𝑏 ଵ), we find the signed intersection 𝑤 (±1 or
zero if o e) is nce c

t (, 𝑏ା
 n n and the d ta ve tor 𝑣: 𝑡 = 𝑝௬ − 𝑏,௬𝑏ାଵ,௬ − 𝑏,௬ , 𝑞 = lerp(𝑏, 𝑏ାଵ, 𝑡) ,
𝑤 = ൜sign൫𝑏ାଵ,௬ − 𝑏,௬൯ , 0 ≤ 𝑡 ≤ 1 and 𝑞,௫ > 𝑝௫0 , otherwise ,
𝑡ᇱ = clamp ቆ (𝑝 − 𝑏) ⋅ (𝑏ାଵ − 𝑏)(𝑏ାଵ − 𝑏) ⋅ (𝑏ାଵ − 𝑏) , 0,1ቇ , 𝑣 = 𝑝 − lerp(𝑏, 𝑏ାଵ, 𝑡ᇱ) .

In principle one should handle the degenerate case of the ray
passing through a vertex, but we have found this unnecessary; it
occurs so infrequently that we have never noticed any artifacts.
Finally, we com s of all segments as: bine the result𝑤 = 𝑤 , 𝑑 = (−1)windingrule(௪) min ‖𝑣‖ .
4.2 Quadratic segments
A quadratic segment (𝑏ିଵ, 𝑏, 𝑏ାଵ), where point 𝑏 is tagged
curvepoint, defines a Bezier curve 𝑏(𝑡) = (1 − 𝑡)ଶ𝑏ିଵ +2(1 − 𝑡)𝑡 𝑏 + 𝑡ଶ𝑏ାଵ over 0 ≤ 𝑡 ≤ 1. We compute the signed
distance from pixel 𝑝 as follows (Figure 3b).
The intersection points of the ray from pixel 𝑝 with the (infinite)
quadratic curve are found at the roots 𝑡ଵ, 𝑡ଶ of the quadratic
equation 𝑏௬(𝑡) = 𝑝௬. (Let us assume 𝑡ଵ ≤ 𝑡ଶ.) A root 𝑡 corres-
ponds to an intersection point on the curve if 0 ≤ 𝑡 ≤ 1. The
orientation curve at an intersection point 𝑏(𝑡) is deter-
m e f ᇱ (tang t ve

of the
in d rom the vertical direction 𝑏௬ 𝑡) of its en ctor 𝑏ᇱ൫𝑡൯ = 𝑑𝑏(𝑡)𝑑𝑡 ቤ௧ୀ௧ೕ = 2(𝑏 − 𝑏ିଵ)(1 − 𝑡) + 2(𝑏ାଵ − 𝑏)𝑡 .

 bi

bi+1

p

vi

qi

bi-1

bi

+x ray

(a)

pp

(b)

vi +x ray

bi+1

Figure 3: Ray intersection testing and distance computation, for
(a) linear and (b) quadratic pa ts. th segmen

For each root 𝑡 we chec ≤ 1 and 𝑏௫(𝑡) > 𝑝௫, and if so
report an intersection w on 𝑤 = sign(𝑏௬ᇱ (𝑡)).

k if 0 ≤ 𝑡
ith orientati

The quadratic equation 𝑏௬(𝑡) = 𝑝௬ becomes linear if the parabola
axis is horizontal, i.e. 𝑏,௬ = భమ൫𝑏ିଵ,௬ + 𝑏ାଵ,௬൯. One simple
solution to avoid having to test this condition at runtime is to
(imperceptibly) perturb the point 𝑏 by one bit during encoding.
Computing the absolute distance to the quadratic Bezier curve
involves finding the roots of a cubic polynomial [Qin et al. 2006].
(Unlike in [Loop and Blinn 2005], we must address distance to a
bounded curve, i.e. with two endpoints.) Analytic roots are quite
expensive to evaluate [Blinn 2006], so an alternative is to use an
iterative solver, as discussed by Qin et al.
Instead, we develop a fast approximate technique based on impli-
citization. Accordingly, we convert the Bezier curve to its
implicit quad Sylvester form of
its resultant [G

ratic representation, given by the
oldman et al. 1984]: −𝑓(𝑝) = 𝛽(𝑝) 𝛿(𝑝) 𝛼ଶ(𝑝) = 0, with 𝑏 𝑏 𝛿(𝑝 t𝛽(𝑝) = 2 Det(𝑝, ାଵ,),) = 2 De (𝑝, 𝑏, 𝑏ିଵ), 𝛼(𝑝) = −Det(𝑝, 𝑏ାଵ, 𝑏ିଵ), and 𝑟) ቚ𝑝 𝑞 𝑟1 1 1ቚ . Det(𝑝, 𝑞, =

The first-order Taylor expansio 0 at 𝑝 defines a line,
and the closest point 𝑝 to en given by

n of 𝑓(𝑝) =ᇱ 𝑝 on this line is th𝑝ᇱ = 𝑝 − 𝑓(𝑝) ∇𝑓(𝑝)‖∇𝑓(𝑝)‖ଶ .
For 𝑝ᇱ exactly on the curve, we can find the parameter 𝑡ᇱsuch that 𝑏(𝑡ᇱ) = 𝑝ᇱ b inversion. In the quad er case ldman
et al. [1984] show that inv a b y

y ratic Bezi , Go
ersion c n e obtained b 𝑡ᇱ = 𝑢ᇱ+ 𝑢ᇱ1 , with either 𝑢ଵᇱ = 𝛼(𝑝ᇱ)𝛽(𝑝ᇱ) or 𝑢ଶᇱ = 𝛿(𝑝ᇱ)𝛼(𝑝ᇱ) .

In fact, if 𝑝ᇱ lies on the curve, the resultant vanishes, and 𝑢ଵᇱ = 𝑢ଶᇱ .
Since this is lly not the case, the two differ, and we
must rel referre e is

genera values
y on an approximation. Our p d choic𝑢ത = 𝛼 + 𝛿𝛼𝛽 + which gives 𝛼 + 𝛿(𝛽 + 𝛼) + (𝛼 + 𝛿)𝑡̅ = .

Notice that 𝑡̅ is exact whenever 𝑝ᇱ is on the curve. The biggest
advantage of 𝑡̅, however, is that it is continuous, even when 𝑝ᇱ
coincides with one of the control points (where 𝑢ଵᇱ or 𝑢ଶᇱ become
undefined).
We then compute the distance vector 𝑣 = 𝑝 − 𝑏൫clam 𝑡̅, 0,1)൯ . p(
(Implementation of these formulas is much simpler if the Bezier
points 𝑏 are translated so as to place 𝑝 (and resp. 𝑝ᇱ) at the origin.)
Although there are cases in which the clamping produces the
wrong endpoint, in practice we have found it to be a sufficiently

Texel Programs for Random-Access Antialiased Vector Graphics (Microsoft Research Technical Report MSR-TR-2007-95, July 2007) Page 4 of 9

good approximation, especially when 𝑝 is a small distance away
from the curve, as demonstrated in Figure 4. Stroke paths whose
widths are poorly approximated are converted to filled primitives.

Figure 4: Distance to quadratic curve. The ground truth (left)
involves cubic polynomial roots. A first-order implicit approxi-
mation (middle) fails to capture the segment endpoints. Our
approximation (right) is fast, and visual analysis reveals that it is
sufficiently accurate in the vicinity of the curve.

4.3 Intra-primitive antialiasing
From the texture-space signed distance 𝑑, we know if the pixel
lies within the interior of a filled path and/or within half a stroke
width of a stroked path. We use the precise magnitude 𝑑 for
subpixel antialiasing as in [Loop and Blinn 2005].

of

For filled paths, we transform the texture-space distance 𝑑 into a
screen-space distance 𝑑ᇱ for isotropic antialiasing using 𝑑ᇱ = 𝑑 𝜎⁄
where 𝜎 = max(‖𝐽௫‖, ‖𝐽௬‖) and the 2×2 matrix 𝐽 is the screen-to-
texture Jacobian reported by the pixel shader derivative instruc-
tion ach graphics v the
colo l using r

s. Therefore, e layer successi ely modifies
r 𝑐 computed at the pixe the blend ope ation: 𝑐 = lerp(𝑐,fillcolor, 𝛼) with 𝛼 = clamp(𝑑ᇱ + 0.5, 0, 1) .

Alternatively, we could apply anisotropic antialiasing using the
technique of Qin et al. [2006], by transforming each texture-space
distance vector reen space (using the inverse of the same
Jacobian matrix ring its magnitude there:

𝑣 to sc
 𝐽) and measu𝑣ᇱ = 𝐽ିଵ 𝑣 , 𝑑ᇱ = (−1)windingrule(௪) min ‖𝑣ᇱ‖ .

For stroked paths, the situation is slightly more complicated.
Because the stroke width 𝑤 is expressed in texture units, we must
consider the distance 𝑑 before its transformation to screen coordi-
nates. Also, th than one pixel
(

in strokes may have width less
isotropic antialiasing, the blendingeFigure 5). For operation is: 𝑐 = lerp(𝑐,strok color, 𝛼) , with 𝛼 = clamp ቀቀ|𝑑| + ௪ଶ ቁ 𝜎⁄ , −0.5,0.5ቁ − clamp ቀቀ|𝑑| − ௪ଶቁ 𝜎⁄ , −0.5,0.5ቁ = clamp ቀቀ|𝑑| + ௪ଶ ቁ 𝜎⁄ + 0.5, 0,1ቁ − clamp ቀቀ|𝑑| − ௪ଶቁ 𝜎⁄ + 0.5, 0,1ቁ .

For paths that are both filled and stroked, we perform two succes-
sive blend operations, first with the fill, and next with the stroke.

pixel p
d

path ww//22

Figure 5: Antialiasing of a thin stroke primitive.

5. Cell-specialized vector graphics
Our strategy is to specialize the vector graphics definition in each
cell to obtain compact storage and efficient runtime evaluation.

5.1 Extended cells
First, we must identify the set of primitives that could contribute
to the rendering of any pixel falling within a given cell. Obvious-
ly, a vector primitive must be included if:
(1) it is filled and its interior overlaps the cell, or
(2) it is stroked and the width of the stroked path overlaps the cell.
However, a primitive should also be included if its screen-space
distance 𝑑ᇱ (see Section 4.3) is less than 0.5 pixels from the cell
boundary, because it could then contribute a blended antialiased
color. Unfortunately, this screen-space distance varies with the
runtime viewing parameters – specifically, the size of cells in
screen space. As the rendered cells shrink to the size of a screen
pixel, the width of the antialiasing ramp becomes as large as a
whole cell. At extreme minification levels where several cells are
mapped into individual pixels, antialiasing breaks down, and one
must instead transition to a conventional image mipmap pyramid.
To allow good antialiasing up to a reasonable minification level
(where we transition to a mipmap), we find the primitives that
overlap an extended cell as illustrated in Figure 6.
Growing this extended cell allows a coarser mipmap pyramid, but
increases the size of the texel programs since more primitives lie
in the extended cell. We have found that a good tradeoff is to set
the overlap band to be 10-20% of the cell size.

5.2 Cell-based specialization
Conceptually, we consider each cell independently, and clip the
entire set of graphics primitives to the boundary of the extended
cell. For stroked paths, the clipping is extremely simple. For
filled paths, it involves polygon clipping [Sutherland-Hodgman
1974] and its straightforward extension to quadratic Bezier seg-
ments.
To achieve the most effective specialization, we exploit know-
ledge of our particular rendering algorithm. Specifically, because
interior testing is based on shooting a ray in the +𝑥 direction, we
omit any segment reported by polygon clipping if the segment lies
on the top, left, or bottom boundaries of the extended cell, as it
has no influence on the signed distance within the cell. This is
best shown with the example of Figure 7.
We express all point coordinates in a [0 … 1]ଶ coordinate system
over the extended cell. In the rare case that a middle curvepoint
Bezier control point lies outside the extended cell, we recursively
subdivide the curve.

Extended cell includes
overlap region

~10-20%
Figure 6: For correct antialiasing, each cell stores all primitives
that affect an extended cell region.

Texel Programs for Random-Access Antialiased Vector Graphics (Microsoft Research Technical Report MSR-TR-2007-95, July 2007) Page 5 of 9

Figure 7: For a filled shape, polygon clipping to each extended
cell gives the paths on the right; the dashed segments have no
effect on our winding rule computation and are therefore re-
moved, whereas the red segments are kept.

ΔΔww==++11ΔΔww==−−11

ΔΔww==++11ΔΔww==−−11

001111

001111

000000

Figure 8: To recover correct winding numbers within the cells,
our fast algorithm inserts segments (green) on right boundaries,
and makes a right-to-left sum of bottom-boundary intersections
to appropriately insert right-boundary edges (red).

Figure 9: Demonstration of our fast cell-specialization algorithm
on a complex shape with self-intersections.

5.3 Fast construction algorithm
Of course, evaluating polygon clipping of all primitives against all
cells is too inefficient, especially for large filled shapes. One
acceleration technique would be a recursive subdivision algorithm
over a quadtree of cells, similar to [Warnock 1969].
We develop a more efficient algorithm that streams over the
primitives just once, and directly enters each path segment into all
cells that the segment overlaps.
The main difficulty is to introduce segments on the right sides of
the cells (red in Figure 7) to define the correct winding number
for a filled shape. In effect, adding an upward segment on the
right cell boundary uniformly increments the winding number,
while a downward segment decrements it. Unfortunately this is a

nonlocal problem, since for instance a cell may lie in the interior
of the shape and yet not contain any path segments.
We have found a simple robust scheme as follows (see Figure 8).
We extend the path segments crossing the right boundary of a cell
to the top right corner of the cell (green edges in the figure), and
for each path segment crossing the bottom of a cell, we record a
change Δ𝑤 in winding number affecting all cells to the left in that
row (+1 for upward segment and −1 for downward segment).
Then in a fast second pass, we traverse each row right-to-left,
integrating the winding number changes, and for each cell with a
nonzero winding number we add the appropriate number of
upward or downward right-boundary segments (red edges in the
figure). The resulting green and red edges are merged together to
exactly reproduce the earlier result in Figure 7.
For completeness we provide here a more detailed algorithm:

for (each layer) {
 for (each segment in layer) {
 Enter the segment into the image cell(s) in which it overlaps,
 clipping it to the cell boundaries.
 If the segment leaves a cell through its right boundary,
 add a segment from the intersection to the top right corner.
 If the segment enters a cell through its right boundary,
 add a segment from the top right corner to the intersection.
 If the segment enters a cell through its lower boundary,
 increment Δwc on the cell.
 If the segment leaves a through its lower boundary,
 decrement Δwc on the cell.
 }
 for (each row of modified cells) {
 Initialize the winding number w=0 (associated with the row).
 for (each span of cells in right-to-left order) {
 Add |w| vertical segments on the right boundary of the cell,
 pointing up if w>0, or down otherwise.
 Merge the cell segments if possible.
 Update the winding number as the running sum w=w+Δwc.
 }
 }
 Clear modified Δwc. // efficiently, using linked lists.
}

The algorithm just described is designed to exactly preserve
winding numbers. For the case of the even-odd fill rule, it can be
simplified to preserve just the parity of the winding number.
Also, for efficiency we preserve connected sets of segments to
avoid extraneous moveto points.
Overall the algorithm is extremely fast; it requires less than a
second even on our most complicated example with ~100K
segments. Figure 9 shows an example with an intricate self-
intersecting shape.

5.4 Occlusion optimization
When the vector graphics is specialized to a cell, it is possible for
the shape within one layer to become completely occluded by one
or more layers in front of it. In traditional rendering this would
cause overdraw. Now we have the opportunity to locally remove
the occluded layer, effectively performing “dead code removal”
on the texel program. One could use general polygon-polygon
clipping [Greiner and Hormann 1998] to check if any layer is
fully occluded by the union of the layers in front of it. In our
current system, we simply check if any filled layer fully occludes
the cell, and if so remove all the layer behind it. As an example,
for the tiger model in Figure 16, the average texel program length
is reduced from 9.8 to 7.3 tokens.

Texel Programs for Random-Access Antialiased Vector Graphics (Microsoft Research Technical Report MSR-TR-2007-95, July 2007) Page 6 of 9

5.5 Compilation into texel program
To represent the cell-specialized graphics as a texel program, we
define a token stream with a simple grammar. We use the least-
significant bit of the color and point coordinates to encode simple
states including the termination of the stream itself:

{TokenStream} = {Layer}+ // ordered back-to-front
{Layer} = {Color} {Point}*
{Color} = [RGBA] // (4 bytes)
 // R,G,B,A color channels for the layer
 // the lsb of R,G,B encode:
 // - LastLayer: is this the last layer?
 // - Stroke: should the path be stroked?
 // - Fill: should the path be filled?
 // !Fill && !Stroke : empty layer containing no {Point} records.
 // Stroke: color channel A encodes strokewidth.
 // Fill && Stroke: strokecolor is assumed black.
{Point} = [X Y] // (2 bytes)
 // X,Y in extended-cell coordinates, quantized to 7 bits.
 // the lsb of X,Y encode the 4 possible
 // point tags: moveto, drawto, curvepoint, last.

The two-byte Point records are packed two-at-a-time, so the texel
program is a simple stream of 32-bit words. Our encoding lets the
same path be simultaneously filled and stroked in the common
case that its stroke color is black and fill color is opaque. Table 1
shows the storage size of different path configurations per layer.
As an optimization, we assume that each layer in the texel pro-
gram is implicitly prefixed by a moveto instruction to the lower-
right of the cell, as this helps remove a point in many cases (e.g.
first two cells in top row of Figure 7).

Cell contents Size in words
Empty (white or transparent) 0

Constant color 1
1 linear segment 2
2 linear segments 3
3 linear segments 3

1 quadratic Bezier curve 3
2 quadratic Bezier curves 4
3 quadratic Bezier curves 5

Table 1: Number of 32-bit words required per cell layer as a
function of path complexity.

5.6 Texel program evaluation in pixel shader
Within the pixel shader, we interpret the token stream of the texel
program and evaluate the rendering algorithm of Section 4. This
interpretation involves a set of three nested loops: a loop over
layers, a loop over point-pair tokens, and a loop over each point in
the point pair. Moreover, within the inner loop there is branching
based on the 4 possible point tags.
Due to the SIMD parallelism in current GPU architectures, shader
program execution is more efficient if nearby pixels follow the
same dynamic branching path. This is true in our context if the
pixels evaluate the same texel program, i.e. if the pixels lie in the
same texture cell or if adjacent cells have the same texel program
(such as in areas of constant color).
Our implementation uses Microsoft DirectX 9. The pixel shader
has a total of 167 assembly instructions if the graphics has only
linear segments, and 273 instructions when including quadratic
paths. The bottleneck is the evaluation of distance to the seg-
ments for both antialiasing and strokes; if this is omitted, the
shader simplifies to 123 and 179 instructions, respectively.

p′

Screen-space pixel Texture-space cell

p (k=4)

Figure 10: Inter-primitive antialiasing evaluates the texel pro-
gram at multiple samples (shown in green).

Without intra-p ve antialiasing rimiti𝑘 = 2 𝑘 = 1 𝑘 = 4
With intra-pri antialiasing mitive𝑘 = 2 𝑘 = 1 𝑘 = 4

Figure 11: Effect of inter-primitive (𝑘 > 1) antialiasing, with
and without the intra-primitive antialiasing of Section 4.3.

6. Inter-primitive antialiasing
The antialiasing of Section 4.3 (using signed distance to the path)
is inexact because the resulting linear blend corresponds to an
infinite line at the closest point of the path, when of course the
path can have more complex local geometry including corners.
Moreover, such antialiasing is computed per shape primitive, so it
ignores inter-primitive interactions. For example, if two filled
paths cross at a pixel, the simple inter-layer blending corresponds
to the assumption that the paths are always perpendicular.
Correct antialiasing requires considering all the shapes overlap-
ping each pixel. A common approach in traditional rasterization
is the A-buffer [Carpenter 1984], which maintains per-pixel lists
of fragments, with each fragment containing a subpixel bitmask.
This general solution is challenging to implement efficiently in
hardware [Winner et al. 1997].
Because texel programs encode the list of relevant vector primi-
tives (on the current surface), we can evaluate and combine colors
at multiple subpixel samples, without any added bandwidth.
The first step is to determine the footprint of the pixel in texture
space, just as in anisotropic texture filtering [Heckbert 1989].
This footprint could overlap several cells, which would require
parsing of multiple texel programs. Fortunately, our extended
cells (Section 5.1) provide the desired margin so we need only
consider the current ce en a pixel footprint grows larger
than the overlap a onventional mipmap.

ll. Wh
 region, we transition to c

Our system evaluates a 𝑘 × 𝑘 grid of samples within a parallelo-
gram footprint ൛ 𝑝 + 𝐽𝑣 ∣∣ ିయర ≤ 𝑣௫, 𝑣௬ ≤ యర ൟ (see Figure 10), and
blends them using a cubic filter. We parse the texel program just
once, updating all samples as each primitive is decoded. This
requires allocating a few temporary registers per sample (accumu-
lated color 𝑐, accumulated winding 𝑤, and shortest distance
vector 𝑣). For each subpixel sample, we still evaluate the intra-
primitive antialiasing of Section 4.3, but with a modified Jacobian
matrix 𝐽ᇱ = యమೖ 𝐽 to account for the modified inter-sample spacing.
Unfortunately, some difficulties with the current shader compilers
prevented us from implementing this functionality within a GPU
pixel program, so for now we resort to a software emulation.

Texel Programs for Random-Access Antialiased Vector Graphics (Microsoft Research Technical Report MSR-TR-2007-95, July 2007) Page 7 of 9

Figure 11 compares the rendering quality with different antialias-
ing settings. Of course, the computation has a cost that scales as 𝑂(𝑘ଶ), but it is performed entirely on local data, and is therefore
amenable to additional parallelism.
The overall rendering algorithm with inter-primitive antialiasing
can be summarized as follows:

for (each sample) {
 Initialize the sample color (e.g. to white or transparent).
}
for (each layer) { // ordered back-to-front
 for (each sample) {
 Initialize the sample winding number to 0.
 Initialize the sample minimum absolute distance to ∞.
 }
 for (each segment in layer) {
 for (each sample) {
 Shoot ray from sample through segment,
 and update running sum of winding number for sample.
 Compute absolute distance to segment,
 and update mininum absolute distance for sample.
 }
 }
 for (each sample) {
 Assign sign to sample distance using sample winding.
 if (fill) Blend fill color over sample color
 based on sample signed distance.
 if (stroke) Blend stroke color over sample color
 based on sample absolute distance.
 }
}
Combine the resulting sample colors to obtain the pixel color.

Several improvements could be explored in future work:
• Both the number and distribution of samples could be adapted

[Laine and Aila 2006].
• The sampling density (e.g. 𝑘) could adapt to the omplexity of

each cell; it could even be encoded within the te l program.
c
xe

• Letting multiple samples share the same texture 𝑦 value would
allow reuse of horizontal intersection points.

• Because the footprints overlap in screen space, some samples
could be shared between pixels if hardware would permit it.

7. Storage of nonuniform cells
Texel programs are variable-length, so we need a data structure to
pack them in memory. Note that the token strings are self-
terminating, so it is unnecessary to store their sizes explicitly.

7.1 Indirection table
An elegant solution is to simply concatenate the token strings in
raster-scan order into a memory buffer (Figure 12a), letting a 2D
indirection table contain pointers to the start of the strings. Cells
with identical strings share use the same string instance, although
we only perform this instancing for row-adjacent cells to preserve
memory coherence. For larger datasets, we introduce a two-level
indirection scheme: one 32-bit pointer for the start of each image
row, and a second 16-bit offset for each string within the row.
This simple solution is possible with the DirectX 10 API, but
unfortunately all the necessary elements (OS, drivers, etc.) did not
arrive in time for us to demonstrate it.
Instead we had to resort to storing data in 2D textures under
DirectX 9. The complication is that 2D textures are actually stored
using an internal tiling structure (optimized for 2D coherence), so
our 1D token strips (Figure 12b) become fragmented in memory.
Although we are able to achieve excellent packing of the strips

into the 2D texture using a greedy best-fit heuristic, this packing
requires modifying the order of the strips, which results in further
loss of memory coherence.

7.2 Variable-rate perfect spatial hashing
Some vector graphics objects are quite sparse, so we have also
explored replacing the indirection table with a perfect spatial hash
function (Figure 12c) similar to [Lefebvre and Hoppe 2006].
Thus, the undefined cells of the domain are identified using a
domain bit image which requires only a single bit per cell. An
important difference is that the data records (token strings) are
variable-sized and therefore stored as strips in the hash table. Let 𝑠(𝑐) denote the vre and Hoppe
2006], the hash :

 strip size of cell 𝑐. As in [Lefeb
 is defined using a 2D offset table Φℎ (𝑐 + Φ[𝑐 mod �̅�]) mod 𝑚ഥ , (𝑐) =

where �̅�×�̅� and 𝑚ഥ×𝑚ഥ are the dimensions of the offset and hash
tables respectively.
The construction of the offset table Φ follows the same heuristic
strategy as in [Lefebvre and Hoppe 2006]: offset vectors Φ[𝑞] are
assigned in order of decreasing number of dependent data ele-
ments. However, rather than counting the number |ℎଵି ଵ(𝑞)| of
dependent data records, where ℎଵ(𝑐) = 𝑐 mod �̅�, we find that is
better to count the total data size ∑ 𝑠(𝑐)∈భషభ() of these depen-
dent records.
To assign Φ[𝑞], we consider all possible offset vectors (starting
from a random one) until finding one that does not create any
hash collisions. An improvement is to encourage placing strips
adjacent to each other by first finding an invalid offset vector and
then looking for the first valid offset.
The indirection table better preserves data coherence and allows
instancing of texel programs, while the hash is more concise in
the case of sparse data.

Cell
Indirection table Data

Token
string

+

Offset table

mod

mod

1D buffer

(a)

(b)

(c)

Figure 12: Our data packing approaches: indirection tables and
variable-rate perfect spatial hashing.

8. Results and discussion
All results are obtained using Microsoft DirectX 9 and an NVI-
DIA GeForce 8800 GTX with 768MB, in an 8002 window. The
examples in this section use an overlap region of size 10-20%
(depending on the maximum stroke width), isotropic intra-
primitive antialiasing, and no inter-primitive antialiasing.

Texel Programs for Random-Access Antialiased Vector Graphics (Microsoft Research Technical Report MSR-TR-2007-95, July 2007) Page 8 of 9

Timing analysis. As discussed in Section 5.3, construction takes
less than a second even on our most complex example. Figure 13
plots rendering rate of the texel program representation as a
function of cell grid resolution, for the lion in Figure 1. At coarse
grid resolutions, the large cells increase the number of primitives
per cell, which in turn increases the per-pixel rendering cost, thus
leading to slower rendering rates. At the other end, as the grid
resolution becomes very fine, the majority of cells contain a single
constant color, so rendering speed reaches a plateau.

0

100

200

300

400

500

600

700

800

900

10 100 1000

Cell grid resolution

M
e
m

o
ry

 s
iz

e
 (

K
B

)

0

50

100

150

200

250

300

350

R
e
n

d
e
ri

n
g
 r

a
te

 (
F
P

S
)

Memory size

Rendering rate

Our shading evaluation should not be memory-bound because the
same cell data is reused by many nearby pixels. Indeed, we have
run some tests where we let each pixel parse the full texel pro-
gram but avoid nearly all computation using the parsed primitives,
and the frame rates increase by a factor of 3-4, thus indicating that
we are presently compute-bound. Therefore, performance will
benefit greatly from additional ALU cores in future hardware.
The pixel shader makes several coarse-grain branching decisions,
based on the number and types of primitives in the texel program.
Fortunately, these decisions are identical for nearby pixels access-
ing the same program, so the SIMD branching penalty is reduced.
Space analysis. Figure 13 also plots memory size as a function of
cell grid resolution. In comparison, the original SVG text descrip-
tion is 12 KB, and its traditional parametric encoding as vertex
and index buffers is about 30KB. At coarse grid resolutions, the
storage overhead with respect to this traditional parametric encod-
ing is small, because most vertices of the vector shape appear in
just one image cell. There are newly introduced vertices at the
boundaries of the cell, and this cost diminishes as the cells are
made larger. As the cell grid resolution increases, storage in-
creases quadratically (just as in an ordinary image) due to the
indirection table.
To get good rendering performance, we have (manually) selected
grid sizes finer than we would have desired. Table 2 shows these
for all datasets. Note that the memory sizes are on the same order
as a typical image representation (but of course texel programs
allow resolution-independent rendering).
Figure 14 shows a histogram of texel program sizes again for the
lion in Figure 1. The most common type of cell is one containing
a single token indicating a constant color. Figure 15 shows an
example where a perfect spatial hash function is used to access the
texel programs on a vector graphics with a sparse set of strokes.
Examples. Figure 16 presents a collection of vector graphics
examples of various types, and Table 2 reports on their complexi-
ties, sizes, and rendering rates. Our representation is trivial to
map onto surfaces as demonstrated in Figure 1.

9. Summary and future work
Texel programs are constructed by locally specializing a vector
graphics description to the cells of a grid using a fast algorithm.
The texel programs provide efficient random-access evaluation of
composited layers of filled and stroked shapes, complete with
antialiasing and transparency.
Avenues for future work include:
• Extension of texel programs to allow more rendering attributes

(e.g. gradient and texture fills), as well as instancing of sprites.
• Improvements to the inter-primitive antialiasing algorithm.
• Generalization of the concept of cell-based specialization to

other applications besides vector graphics.

Figure 13: Memory usage and rendering rate as a function of cell
grid resolution for the lion in Figure 1.

Dataset
Input

#Verts

Conv.
time
(sec)

Texel program representation
Render

(fps) Size
(KB)

Cell
grid

Cell size
Avg. Max.

Lion 2080 0.052 60 41×64 5.2 22 320
Boston 140399 0.901 617 512×462 4.5 100 76
Siggr. logo 2420 0.018 99 64×41 9.9 35 226
Hygieia 9922 0.085 214 109×256 4.4 12 570
Tiger 21278 0.159 267 120×128 7.3 80 107
Butterfly 5669 0.013 85 32×20 15.7 60 77
Picasso 7717 0.083 199 53×64 11.2 63 81
Denmark 101386 0.387 406 256×198 4.1 67 97
Floor plan 91887 0.368 305 512×176 6.7 60 96
CAD 22393 0.168 258 256×199 5.6 54 179
Rollerblader 4122 0.036 134 78×128 3.6 26 292
Table 2: Quantitative results, including input vertices, construc-
tion times, and texel program statistics. (Cell sizes are in 32-bit
words, and average cell size considers only nonempty cells.)

Figure 14: Histogram of texel program complexity.

Close-up with cell grid Visual. of cell complexities

Figure 15: Example using a perfect spatial hash function.

0
1000
2000
3000
4000

0 5 10 15

N
um

be
r o

f c
el

ls

Cell size (in 32-bit tokens)

Texel Programs for Random-Access Antialiased Vector Graphics (Microsoft Research Technical Report MSR-TR-2007-95, July 2007) Page 9 of 9

References

BLINN, J. 2006. How to Solve a Cubic Equation, Part 2: The 11
Case. IEEE CG&A, 26(4), 90-100.

CARPENTER, L. 1984. The A-buffer, an antialiased hidden surface
method. ACM SIGGRAPH, 103-108.

FOLEY, J., VAN DAM, A., FEINER, S., AND HUGHES, J. 1990. Com-
puter Graphics: Principles and Practice. Addison Wesley.

FRISKEN, S., PERRY, R., ROCKWOOD, A., AND JONES, T. 2000.
Adaptively sampled distance fields: A general representation
of shape for computer graphics. ACM SIGGRAPH, 249-254.

GOLDMAN, R., SEDERBERG, T., AND ANDERSON, D. 1984. Vector
elimination: A technique for the implicitization, inversion, and
intersection of planar parametric rational polynomial curves.
CAGD 1, 327-356.

GREINER, G., AND HORMANN, K. 1998. Efficient clipping of
arbitrary polygons. ACM TOG 17(2), 71-83.

HECKBERT, P. 1989. Fundamentals of texture mapping and image
warping. M.S. Thesis, UC Berkeley, Dept of EECS.

LAINE, S., AND AILA, T. 2006. A weighted error metric and
optimization method for antialiasing patterns. Eurographics,
83-94.

LEFEBVRE, S., AND HOPPE, H. 2006. Perfect spatial hashing.
ACM SIGGRAPH, 579-588.

LOOP, C., AND BLINN, J. 2005. Resolution-independent curve
rendering using programmable graphics hardware. ACM SIG-
GRAPH, 1000-1009.

LOVISCACH, J. 2005. Efficient magnification of bi-level textures.
ACM SIGGRAPH Sketches.

PEERCY, M., OLANO, M., AIREY, J., AND UNGAR, J. 2000. Interac-
tive multi-pass programmable shading. ACM SIGGRAPH,
425-432.

QIN, Z., MCCOOL, M., AND KAPLAN, C. 2006. Real-time texture-
mapped vector glyphs. Symposium on Interactive 3D Graphics
and Games, 125-132.

RAMANARAYANAN, G., BALA, K., AND WALTER, B. 2004. Fea-
ture-based textures. Eurographics Symposium on Rendering,
65-73.

RAY, N., CAVIN, X., AND LÉVY, B. 2005. Vector texture maps on
the GPU. Technical Report ALICE-TR-05-003.

SEN, P., CAMMARANO, M., AND HANRAHAN, P. 2003. Shadow
silhouette maps. ACM SIGGRAPH, 521-526.

(Already close-up)
SEN, P. 2004. Silhouette maps for improved texture magnifica-

tion. Symposium on Graphics Hardware, 65-73.
SUTHERLAND, I., AND HODGMAN, G. 1974. Reentrant polygon

clipping. Communications of the ACM 17(1), 32-42.
TARINI, M., AND CIGNONI, P. 2005. Pinchmaps: Textures with

customizable discontinuities. Eurographics, 557-568.
TUMBLIN, J., AND CHOUDHURY, P. 2004. Bixels: Picture samples

with sharp embedded boundaries. Symposium on Rendering,
186-194. (Already close-up)

WARNOCK, J. 1969. A hidden surface algorithm for computer
generated halftone pictures. PhD Thesis, University of Utah.

WINNER, S., KELLEY, M., PEASE, B., RIVARD, B., AND YEN, A.
1997. Hardware accelerated rendering of antialiasing using a
modified A-buffer algorithm. ACM SIGGRAPH, 307-316.

Figure 16: Example results, and close-ups showing good anti-
aliasing. Inset images reveal cell grid and magnified graphics.

	1. Introduction
	2. Related work
	3. Vector graphics representation
	4. Pixel-based rendering evaluation
	4.1 Linear segments
	4.2 Quadratic segments
	4.3 Intra-primitive antialiasing

	5. Cell-specialized vector graphics
	5.1 Extended cells
	5.2 Cell-based specialization
	5.3 Fast construction algorithm
	5.4 Occlusion optimization
	5.5 Compilation into texel program
	5.6 Texel program evaluation in pixel shader

	6. Inter-primitive antialiasing
	7. Storage of nonuniform cells
	7.1 Indirection table
	7.2 Variable-rate perfect spatial hashing

	8. Results and discussion
	9. Summary and future work
	References

