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fragment lists [Carpenter 1984].  Although inter-primitive anti-
aliasing adds computational cost, it involves no extra memory 
access.  Moreover, there is opportunity to spatially adapt the 
supersampling density to local geometric complexity, e.g. falling 
back to a single sample per pixel in regions of constant color. 
Texel programs also inherit advantages demonstrated previously 
in vector images.  The geometric primitives stored in texel pro-
grams can use lower-precision (e.g. 8-bit) cell-local coordinates.  
And, since the vector graphics are evaluated entirely in the shader, 
they can be mapped onto general surfaces just like texture images. 
Limitations: 
• Cell-based specialization assumes a static layout of graphics 

primitives in the domain, although the construction is fast; 
• The description of each vector path segment is replicated in all 

cells over which it overlaps, but this storage overhead is often 
small since segments typically have small spatial extent; 

• All cells in the interior of a filled shape must include the shape 
color, just as in an ordinary image; on the other hand, there is 
no need to store a triangulation of the shape; 

• The current implementation supports only a subset of SVG, e.g. 
no stylized strokes, gradient fills, or instancing of glyphs; 

• Filtered minification requires an ordinary mipmap, but this is 
true of all other approaches; 

• Antialiasing considers all vector graphics primitives rendered 
onto the current surface, but does not address inter-surface an-
tialiasing such as silhouettes. 

Because the cell descriptions have variable sizes, we use an 
indirection scheme to compact the data.  We explore compaction 
strategies based on indirection tables and perfect spatial hashes. 
Main contributions: 
• Texel programs for spatially specialized vector graphics; 
• Fast construction using path rasterization and a simple sweep; 
• Fast computation of approximate distance to a quadratic curve; 
• Single-pass, spatially adaptive inter-primitive antialiasing. 

2. Related work 
Vector images incorporate sharp outlines within a color image by 
encoding extra information in its pixels. Most schemes enforce a 
bound on the outline complexity within each image cell, such as 
two line segments [Sen et al. 2003, 2004; Tumblin and Choud-
hury 2004; Lefebvre and Hoppe 2006], an implicit bilinear curve 
[Tarini and Cignoni 2005; Loviscach 2005], a parametric cubic 
curve [Ray et al. 2005], or 2–4 corner features [Qin et al. 2006].  
A drawback of fixed-complexity cells is that small areas of high 
detail (such as serifs on a font glyph or cities on a map) require 
fine cell grids, which globally increases storage cost.  A quadtree 
structure can provide nice adaptivity [Frisken et al. 2000], but still 
limits the number of primitives at the leaf nodes.  In contrast, the 
feature-based textures of Ramanarayanan et al. [2004] can store 
arbitrary lists of path discontinuities in each texel.  These discon-
tinuities partition the texels into regions, and traditional bilinear 
interpolation is overridden based on precomputed region masks. 
Most prior schemes consider only a single layer of non-
overlapping vector primitives.  A generalization explored by Ray 
et al. [2005] is to construct a compositing hierarchy of several 
vector images.  However, on general graphics models such as the 
examples in this paper, a global compositing hierarchy becomes 
overly complex and its cost applies uniformly to all pixels.  In 
essence, our scheme adaptively simplifies this hierarchy per cell. 

Like the approach of Ramanarayanan et al. [2004], we also store 
variable-length descriptions within each grid cell.  However, 
rather than maintaining compatibility with a raster image, we 
instead focus on encoding general vector graphics, including thin 
stroke primitives that cannot be represented as regions.  We also 
model multiple semitransparent graphics layers, and compute 
distances for antialiasing.  Finally, we design our data structure to 
encapsulate each cell description into a concise token string that 
can be efficiently parsed within a shader. 
Similar to Frisken et al. [2000] and Qin et al. [2006], our repre-
sentation lets us compute signed distance to the shape primitives, 
which permits screen-space antialiasing.  While Frisken et al. use 
a multilinear implicit approximant, and Qin et al. record oriented 
corner features, we recover signed distance by storing paths of 
segments and performing ray intersection testing.  A unique 
aspect of our scheme is the runtime computation of a winding 
number to allow filling of self-intersecting paths.  Also, paths let 
us represent corners accurately without any special processing. 

3. Vector graphics representation 
Our vector graphics representation is very similar to that of 
Postscript or SVG.  The basic shape primitive is a path consisting 
of linear and/or quadratic segments specified by a sequence of 2D 
points.  Each point has one of four possible tags: moveto, drawto, 
curvepoint, or last, as shown by this example: 

A-moveto, 
B-drawto, 
C-drawto, 
D-curvepoint, 
E-drawto, 
F-drawto, 
G-moveto, 
H-last 

{ 

} 
A

B
C

D 

E
F

G
H 

 
For vector graphics containing cubic curve segments, we adap-
tively approximate these using one or more quadratic segments. 
A layer associates a rendering state to the path, including whether 
it is stroked and/or filled, its color, and stroke width.  A filled path 
must be closed; we define its interior using a winding rule, which 
is even-odd by default.  The overall vector graphics consists of a 
back-to-front ordered list of such layers. 

4. Pixel-based rendering evaluation 
Most rendering algorithms for vector graphics objects traverse the 
graphics primitives sequentially, rasterizing each one over a 
framebuffer.  Instead, for our random-access strategy, we must 
design an algorithm to directly evaluate color at any given point, 
as requested by a pixel shader program. 
The basic approach is to compute the color (including alpha) 
contributed by each graphics layer at the current pixel and to 
composite these colors in back-to-front order.  A more advanced 
algorithm for antialiasing primitives across layers is described in 
Section 6. 
For each layer, we seek (1) the absolute distance from the pixel to 
the path, and (2) for filled shapes whether the pixel is in the path 
interior.  The distance to the path is found simply as the minimum 
distance to the segments of the path.  To determine if the pixel lies 
in the path interior, we compute the winding number by shooting 
a ray from the pixel to the right (+𝑥) in texture space and sum-
ming the signed intersections with the oriented path segments, as 
illustrated in Figure 2 (see [Foley et al. 1990]).  We convert the 
absolute distance to a signed distance using the even-odd winding 
number rule. 
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Figure 2: Winding numbers as sums of oriented intersections. 

The overall rendering algorithm can be summarized as follows: 
Initialize the pixel color.  // e.g. white or transparent 
for (each layer) { // ordered back-to-front 
 Initialize the cell winding number to 0. 
 for (each segment in layer) { 
  Shoot ray from pixel through segment, 
   and update running sum of winding number. 
  Compute absolute distance to segment, 
   and update mininum absolute distance. 
 } 
 Assign sign to distance using winding number. 
 if (fill) Blend fill color based on signed distance. 
 if (stroke) Blend stroke color based on distance. 
} 

4.1 Linear segments 
Given a pixel 𝑝 and linear segments {(𝑏ଵ, 𝑏ଶ), (𝑏ଶ, 𝑏ଷ), … }, we 
compute the signed distance 𝑑 as follows (refer to Figure 3a).  For 
each segmen 𝑏 ଵ), we find the signed intersection 𝑤 (±1 or 
zero if o e) is nce c

t ( , 𝑏ା
 n n and the d ta ve tor 𝑣: 𝑡 = 𝑝௬ − 𝑏,௬𝑏ାଵ,௬ − 𝑏,௬  , 𝑞 = lerp(𝑏, 𝑏ାଵ, 𝑡) , 
𝑤 = ൜sign൫𝑏ାଵ,௬ − 𝑏,௬൯  , 0 ≤ 𝑡 ≤ 1 and 𝑞,௫ > 𝑝௫0   , otherwise ,  
𝑡ᇱ = clamp ቆ (𝑝 − 𝑏) ⋅ (𝑏ାଵ − 𝑏)(𝑏ାଵ − 𝑏) ⋅ (𝑏ାଵ − 𝑏) , 0,1ቇ , 𝑣 = 𝑝 − lerp(𝑏, 𝑏ାଵ, 𝑡ᇱ) .  

In principle one should handle the degenerate case of the ray 
passing through a vertex, but we have found this unnecessary; it 
occurs so infrequently that we have never noticed any artifacts. 
Finally, we com s of all segments as: bine the result𝑤 =  𝑤  , 𝑑 = (−1)windingrule(௪) min ‖𝑣‖ . 
4.2 Quadratic segments 
A quadratic segment (𝑏ିଵ, 𝑏, 𝑏ାଵ), where point 𝑏 is tagged 
curvepoint, defines a Bezier curve 𝑏(𝑡) = (1 − 𝑡)ଶ𝑏ିଵ +2(1 − 𝑡)𝑡 𝑏 + 𝑡ଶ𝑏ାଵ over 0 ≤ 𝑡 ≤ 1.  We compute the signed 
distance from pixel 𝑝 as follows (Figure 3b). 
The intersection points of the ray from pixel 𝑝 with the (infinite) 
quadratic curve are found at the roots 𝑡ଵ, 𝑡ଶ of the quadratic 
equation 𝑏௬(𝑡) = 𝑝௬.  (Let us assume 𝑡ଵ ≤ 𝑡ଶ.)  A root 𝑡 corres-
ponds to an intersection point on the curve if 0 ≤ 𝑡 ≤ 1.  The 
orientation  curve at an intersection point 𝑏(𝑡) is deter-
m e f ᇱ ( tang t ve

of the
in d rom the vertical direction 𝑏௬ 𝑡) of its en ctor 𝑏ᇱ൫𝑡൯ = 𝑑𝑏(𝑡)𝑑𝑡 ቤ௧ୀ௧ೕ = 2(𝑏 − 𝑏ିଵ)(1 − 𝑡) + 2(𝑏ାଵ − 𝑏)𝑡 . 
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Figure 3: Ray intersection testing and distance computation, for 
(a) linear and (b) quadratic pa ts. th segmen

For each root 𝑡 we chec  ≤ 1 and 𝑏௫(𝑡) > 𝑝௫, and if so 
report an intersection w on 𝑤 = sign(𝑏௬ᇱ (𝑡)). 

k if 0 ≤ 𝑡
ith orientati

The quadratic equation 𝑏௬(𝑡) = 𝑝௬ becomes linear if the parabola 
axis is horizontal, i.e. 𝑏,௬ = భమ൫𝑏ିଵ,௬ + 𝑏ାଵ,௬൯.  One simple 
solution to avoid having to test this condition at runtime is to 
(imperceptibly) perturb the point 𝑏 by one bit during encoding. 
Computing the absolute distance to the quadratic Bezier curve 
involves finding the roots of a cubic polynomial [Qin et al. 2006].  
(Unlike in [Loop and Blinn 2005], we must address distance to a 
bounded curve, i.e. with two endpoints.)  Analytic roots are quite 
expensive to evaluate [Blinn 2006], so an alternative is to use an 
iterative solver, as discussed by Qin et al. 
Instead, we develop a fast approximate technique based on impli-
citization.  Accordingly, we convert the Bezier curve to its 
implicit quad  Sylvester form of 
its resultant [G

ratic representation, given by the
oldman et al. 1984]: −𝑓(𝑝) = 𝛽(𝑝) 𝛿(𝑝) 𝛼ଶ(𝑝) = 0,  with 𝑏 𝑏   𝛿(𝑝 t𝛽(𝑝) = 2 Det(𝑝, ାଵ, ), ) = 2 De (𝑝, 𝑏, 𝑏ିଵ), 𝛼(𝑝) = −Det(𝑝, 𝑏ାଵ, 𝑏ିଵ), and 𝑟) ቚ𝑝 𝑞 𝑟1 1 1ቚ .  Det(𝑝, 𝑞, =

The first-order Taylor expansio 0 at 𝑝 defines a line, 
and the closest point 𝑝  to en given by 

n of 𝑓(𝑝) =ᇱ  𝑝 on this line is th𝑝ᇱ = 𝑝 − 𝑓(𝑝) ∇𝑓(𝑝)‖∇𝑓(𝑝)‖ଶ  . 
For 𝑝ᇱ exactly on the curve, we can find the parameter 𝑡ᇱsuch that 𝑏(𝑡ᇱ) = 𝑝ᇱ b  inversion.  In the quad er case ldman 
et al. [1984] show that inv a b y

y ratic Bezi ,  Go
ersion c n e obtained b  𝑡ᇱ = 𝑢ᇱ+ 𝑢ᇱ1  , with either  𝑢ଵᇱ = 𝛼(𝑝ᇱ)𝛽(𝑝ᇱ)   or  𝑢ଶᇱ = 𝛿(𝑝ᇱ)𝛼(𝑝ᇱ) . 

In fact, if 𝑝ᇱ lies on the curve, the resultant vanishes, and 𝑢ଵᇱ = 𝑢ଶᇱ .  
Since this is lly not the case, the two  differ, and we 
must rel referre e is 

genera values
y on an approximation.  Our p d choic𝑢ത = 𝛼 + 𝛿𝛼𝛽 +   which gives  𝛼 + 𝛿(𝛽 + 𝛼) + (𝛼 + 𝛿)𝑡̅ =  . 

Notice that 𝑡̅ is exact whenever 𝑝ᇱ is on the curve. The biggest 
advantage of 𝑡̅, however, is that it is continuous, even when 𝑝ᇱ 
coincides with one of the control points (where 𝑢ଵᇱ  or 𝑢ଶᇱ  become 
undefined). 
We then compute the distance vector 𝑣 = 𝑝 − 𝑏൫clam 𝑡̅, 0,1)൯ . p(
(Implementation of these formulas is much simpler if the Bezier 
points 𝑏 are translated so as to place 𝑝 (and resp. 𝑝ᇱ) at the origin.) 
Although there are cases in which the clamping produces the 
wrong endpoint, in practice we have found it to be a sufficiently 
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good approximation, especially when 𝑝 is a small distance away 
from the curve, as demonstrated in Figure 4.  Stroke paths whose 
widths are poorly approximated are converted to filled primitives. 

Figure 4: Distance to quadratic curve.  The ground truth (left) 
involves cubic polynomial roots.  A first-order implicit approxi-
mation (middle) fails to capture the segment endpoints.  Our 
approximation (right) is fast, and visual analysis reveals that it is 
sufficiently accurate in the vicinity of the curve. 

4.3 Intra-primitive antialiasing 
From the texture-space signed distance 𝑑, we know if the pixel 
lies within the interior of a filled path and/or within half a stroke 
width of a stroked path.  We use the precise magnitude  𝑑 for 
subpixel antialiasing as in [Loop and Blinn 2005]. 

of

For filled paths, we transform the texture-space distance 𝑑 into a 
screen-space distance 𝑑ᇱ for isotropic antialiasing using 𝑑ᇱ = 𝑑 𝜎⁄  
where 𝜎 = max(‖𝐽௫‖, ‖𝐽௬‖) and the 2×2 matrix 𝐽 is the screen-to-
texture Jacobian reported by the pixel shader derivative instruc-
tion ach graphics v  the 
colo l using r

s.  Therefore, e layer successi ely modifies
r 𝑐 computed at the pixe  the blend ope ation: 𝑐 = lerp(𝑐,fillcolor, 𝛼)  with  𝛼 = clamp(𝑑ᇱ + 0.5, 0, 1) . 

Alternatively, we could apply anisotropic antialiasing using the 
technique of Qin et al. [2006], by transforming each texture-space 
distance vector  reen space (using the inverse of the same 
Jacobian matrix  ring its magnitude there: 

𝑣 to sc
 𝐽) and measu𝑣ᇱ = 𝐽ିଵ 𝑣 , 𝑑ᇱ = (−1)windingrule(௪)  min ‖𝑣ᇱ‖ . 

For stroked paths, the situation is slightly more complicated.  
Because the stroke width 𝑤 is expressed in texture units, we must 
consider the distance 𝑑 before its transformation to screen coordi-
nates.  Also, th than one pixel 
(

in strokes may have width less 
isotropic antialiasing, the blendingeFigure 5).  For  operation is: 𝑐 = lerp(𝑐,strok color, 𝛼) ,  with 𝛼 = clamp ቀቀ|𝑑| + ௪ଶ ቁ 𝜎⁄ , −0.5,0.5ቁ − clamp ቀቀ|𝑑| − ௪ଶቁ 𝜎⁄ , −0.5,0.5ቁ = clamp ቀቀ|𝑑| + ௪ଶ ቁ 𝜎⁄ + 0.5, 0,1ቁ − clamp ቀቀ|𝑑| − ௪ଶቁ 𝜎⁄ + 0.5, 0,1ቁ . 

For paths that are both filled and stroked, we perform two succes-
sive blend operations, first with the fill, and next with the stroke. 
 

pixel p 
d 

path ww//22

 
Figure 5: Antialiasing of a thin stroke primitive. 

5. Cell-specialized vector graphics 
Our strategy is to specialize the vector graphics definition in each 
cell to obtain compact storage and efficient runtime evaluation. 

5.1 Extended cells 
First, we must identify the set of primitives that could contribute 
to the rendering of any pixel falling within a given cell.  Obvious-
ly, a vector primitive must be included if: 
(1) it is filled and its interior overlaps the cell, or 
(2) it is stroked and the width of the stroked path overlaps the cell. 
However, a primitive should also be included if its screen-space 
distance 𝑑ᇱ (see Section 4.3) is less than 0.5 pixels from the cell 
boundary, because it could then contribute a blended antialiased 
color.  Unfortunately, this screen-space distance varies with the 
runtime viewing parameters – specifically, the size of cells in 
screen space.  As the rendered cells shrink to the size of a screen 
pixel, the width of the antialiasing ramp becomes as large as a 
whole cell.  At extreme minification levels where several cells are 
mapped into individual pixels, antialiasing breaks down, and one 
must instead transition to a conventional image mipmap pyramid. 
To allow good antialiasing up to a reasonable minification level 
(where we transition to a mipmap), we find the primitives that 
overlap an extended cell as illustrated in Figure 6. 
Growing this extended cell allows a coarser mipmap pyramid, but 
increases the size of the texel programs since more primitives lie 
in the extended cell.  We have found that a good tradeoff is to set 
the overlap band to be 10-20% of the cell size. 

5.2 Cell-based specialization 
Conceptually, we consider each cell independently, and clip the 
entire set of graphics primitives to the boundary of the extended 
cell.  For stroked paths, the clipping is extremely simple.  For 
filled paths, it involves polygon clipping [Sutherland-Hodgman 
1974] and its straightforward extension to quadratic Bezier seg-
ments. 
To achieve the most effective specialization, we exploit know-
ledge of our particular rendering algorithm.  Specifically, because 
interior testing is based on shooting a ray in the +𝑥 direction, we 
omit any segment reported by polygon clipping if the segment lies 
on the top, left, or bottom boundaries of the extended cell, as it 
has no influence on the signed distance within the cell.  This is 
best shown with the example of Figure 7. 
We express all point coordinates in a [0 … 1]ଶ coordinate system 
over the extended cell.  In the rare case that a middle curvepoint 
Bezier control point lies outside the extended cell, we recursively 
subdivide the curve. 
 
 

  

Extended cell includes
overlap region 

~10-20%  
Figure 6: For correct antialiasing, each cell stores all primitives 
that affect an extended cell region. 
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Figure 7: For a filled shape, polygon clipping to each extended 
cell gives the paths on the right; the dashed segments have no 
effect on our winding rule computation and are therefore re-
moved, whereas the red segments are kept. 

ΔΔww==++11ΔΔww==−−11

ΔΔww==++11ΔΔww==−−11

001111

001111

000000
 

Figure 8: To recover correct winding numbers within the cells, 
our fast algorithm inserts segments (green) on right boundaries, 
and makes a right-to-left sum of bottom-boundary intersections 
to appropriately insert right-boundary edges (red). 

Figure 9: Demonstration of our fast cell-specialization algorithm 
on a complex shape with self-intersections. 

5.3 Fast construction algorithm 
Of course, evaluating polygon clipping of all primitives against all 
cells is too inefficient, especially for large filled shapes.  One 
acceleration technique would be a recursive subdivision algorithm 
over a quadtree of cells, similar to [Warnock 1969]. 
We develop a more efficient algorithm that streams over the 
primitives just once, and directly enters each path segment into all 
cells that the segment overlaps. 
The main difficulty is to introduce segments on the right sides of 
the cells (red in Figure 7) to define the correct winding number 
for a filled shape.  In effect, adding an upward segment on the 
right cell boundary uniformly increments the winding number, 
while a downward segment decrements it.  Unfortunately this is a 

nonlocal problem, since for instance a cell may lie in the interior 
of the shape and yet not contain any path segments. 
We have found a simple robust scheme as follows (see Figure 8).  
We extend the path segments crossing the right boundary of a cell 
to the top right corner of the cell (green edges in the figure), and 
for each path segment crossing the bottom of a cell, we record a 
change Δ𝑤 in winding number affecting all cells to the left in that 
row (+1 for upward segment and −1 for downward segment).  
Then in a fast second pass, we traverse each row right-to-left, 
integrating the winding number changes, and for each cell with a 
nonzero winding number we add the appropriate number of 
upward or downward right-boundary segments (red edges in the 
figure).  The resulting green and red edges are merged together to 
exactly reproduce the earlier result in Figure 7. 
For completeness we provide here a more detailed algorithm: 

for (each layer) { 
 for (each segment in layer) { 
  Enter the segment into the image cell(s) in which it overlaps, 
   clipping it to the cell boundaries. 
  If the segment leaves a cell through its right boundary, 
   add a segment from the intersection to the top right corner.  
  If the segment enters a cell through its right boundary, 
   add a segment from the top right corner to the intersection. 
  If the segment enters a cell through its lower boundary, 
   increment Δwc on the cell.  
  If the segment leaves a through its lower boundary, 
   decrement Δwc on the cell.  
 } 
 for (each row of modified cells) { 
  Initialize the winding number w=0 (associated with the row). 
  for (each span of cells in right-to-left order) { 
   Add |w| vertical segments on the right boundary of the cell, 
    pointing up if w>0, or down otherwise. 
   Merge the cell segments if possible. 
   Update the winding number as the running sum w=w+Δwc. 
  } 
 } 
 Clear modified  Δwc. // efficiently, using linked lists. 
} 

The algorithm just described is designed to exactly preserve 
winding numbers.  For the case of the even-odd fill rule, it can be 
simplified to preserve just the parity of the winding number.  
Also, for efficiency we preserve connected sets of segments to 
avoid extraneous moveto points. 
Overall the algorithm is extremely fast; it requires less than a 
second even on our most complicated example with ~100K 
segments.  Figure 9 shows an example with an intricate self-
intersecting shape. 

5.4 Occlusion optimization 
When the vector graphics is specialized to a cell, it is possible for 
the shape within one layer to become completely occluded by one 
or more layers in front of it.  In traditional rendering this would 
cause overdraw.  Now we have the opportunity to locally remove 
the occluded layer, effectively performing “dead code removal” 
on the texel program.  One could use general polygon-polygon 
clipping [Greiner and Hormann 1998] to check if any layer is 
fully occluded by the union of the layers in front of it.  In our 
current system, we simply check if any filled layer fully occludes 
the cell, and if so remove all the layer behind it.  As an example, 
for the tiger model in Figure 16, the average texel program length 
is reduced from 9.8 to 7.3 tokens. 
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5.5 Compilation into texel program 
To represent the cell-specialized graphics as a texel program, we 
define a token stream with a simple grammar.  We use the least-
significant bit of the color and point coordinates to encode simple 
states including the termination of the stream itself: 

{TokenStream} = {Layer}+ // ordered back-to-front 
{Layer} = {Color} {Point}* 
{Color} = [RGBA]  // (4 bytes) 
 // R,G,B,A color channels for the layer 
 // the lsb of R,G,B encode: 
 // - LastLayer: is this the last layer? 
 // - Stroke: should the path be stroked? 
 // - Fill:  should the path be filled? 
 // !Fill && !Stroke : empty layer containing no {Point} records. 
 // Stroke: color channel A encodes strokewidth. 
 // Fill && Stroke: strokecolor is assumed black. 
{Point} = [X Y]  // (2 bytes) 
 // X,Y in extended-cell coordinates, quantized to 7 bits. 
 // the lsb of X,Y encode the 4 possible 
 //   point tags: moveto, drawto, curvepoint, last. 

The two-byte Point records are packed two-at-a-time, so the texel 
program is a simple stream of 32-bit words.  Our encoding lets the 
same path be simultaneously filled and stroked in the common 
case that its stroke color is black and fill color is opaque.  Table 1 
shows the storage size of different path configurations per layer. 
As an optimization, we assume that each layer in the texel pro-
gram is implicitly prefixed by a moveto instruction to the lower-
right of the cell, as this helps remove a point in many cases (e.g. 
first two cells in top row of Figure 7). 
 

Cell contents Size in words
Empty (white or transparent) 0 

Constant color 1 
1 linear segment 2 
2 linear segments 3 
3 linear segments 3 

1 quadratic Bezier curve 3 
2 quadratic Bezier curves 4 
3 quadratic Bezier curves 5 

Table 1: Number of 32-bit words required per cell layer as a 
function of path complexity. 

5.6 Texel program evaluation in pixel shader 
Within the pixel shader, we interpret the token stream of the texel 
program and evaluate the rendering algorithm of Section 4.  This 
interpretation involves a set of three nested loops: a loop over 
layers, a loop over point-pair tokens, and a loop over each point in 
the point pair.  Moreover, within the inner loop there is branching 
based on the 4 possible point tags. 
Due to the SIMD parallelism in current GPU architectures, shader 
program execution is more efficient if nearby pixels follow the 
same dynamic branching path.  This is true in our context if the 
pixels evaluate the same texel program, i.e. if the pixels lie in the 
same texture cell or if adjacent cells have the same texel program 
(such as in areas of constant color). 
Our implementation uses Microsoft DirectX 9.  The pixel shader 
has a total of 167 assembly instructions if the graphics has only 
linear segments, and 273 instructions when including quadratic 
paths.  The bottleneck is the evaluation of distance to the seg-
ments for both antialiasing and strokes; if this is omitted, the 
shader simplifies to 123 and 179 instructions, respectively. 

p′

Screen-space pixel Texture-space cell

p (k=4)

 
Figure 10: Inter-primitive antialiasing evaluates the texel pro-
gram at multiple samples (shown in green). 

Without intra-p ve antialiasing rimiti𝑘 = 2 𝑘 = 1 𝑘 = 4
With intra-pri  antialiasing mitive𝑘 = 2 𝑘 = 1 𝑘 = 4

Figure 11: Effect of inter-primitive (𝑘 > 1) antialiasing, with 
and without the intra-primitive antialiasing of Section 4.3. 

6. Inter-primitive antialiasing 
The antialiasing of Section 4.3 (using signed distance to the path) 
is inexact because the resulting linear blend corresponds to an 
infinite line at the closest point of the path, when of course the 
path can have more complex local geometry including corners. 
Moreover, such antialiasing is computed per shape primitive, so it 
ignores inter-primitive interactions.  For example, if two filled 
paths cross at a pixel, the simple inter-layer blending corresponds 
to the assumption that the paths are always perpendicular. 
Correct antialiasing requires considering all the shapes overlap-
ping each pixel.  A common approach in traditional rasterization 
is the A-buffer [Carpenter 1984], which maintains per-pixel lists 
of fragments, with each fragment containing a subpixel bitmask.  
This general solution is challenging to implement efficiently in 
hardware [Winner et al. 1997]. 
Because texel programs encode the list of relevant vector primi-
tives (on the current surface), we can evaluate and combine colors 
at multiple subpixel samples, without any added bandwidth. 
The first step is to determine the footprint of the pixel in texture 
space, just as in anisotropic texture filtering [Heckbert 1989].  
This footprint could overlap several cells, which would require 
parsing of multiple texel programs.  Fortunately, our extended 
cells (Section 5.1) provide the desired margin so we need only 
consider the current ce en a pixel footprint grows larger 
than the overlap a onventional mipmap. 

ll.  Wh
 region, we transition to c

Our system evaluates a 𝑘 × 𝑘 grid of samples within a parallelo-
gram footprint ൛ 𝑝 + 𝐽𝑣 ∣∣ ିయర ≤ 𝑣௫, 𝑣௬ ≤ యర ൟ (see Figure 10), and 
blends them using a cubic filter.  We parse the texel program just 
once, updating all samples as each primitive is decoded.  This 
requires allocating a few temporary registers per sample (accumu-
lated color 𝑐, accumulated winding 𝑤, and shortest distance 
vector 𝑣).  For each subpixel sample, we still evaluate the intra-
primitive antialiasing of Section 4.3, but with a modified Jacobian 
matrix 𝐽ᇱ = యమೖ 𝐽  to account for the modified inter-sample spacing. 
Unfortunately, some difficulties with the current shader compilers 
prevented us from implementing this functionality within a GPU 
pixel program, so for now we resort to a software emulation.  
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Figure 11 compares the rendering quality with different antialias-
ing settings.  Of course, the computation has a cost that scales as 𝑂(𝑘ଶ), but it is performed entirely on local data, and is therefore 
amenable to additional parallelism. 
The overall rendering algorithm with inter-primitive antialiasing 
can be summarized as follows: 

for (each sample) { 
 Initialize the sample color (e.g. to white or transparent).  
} 
for (each layer) { // ordered back-to-front 
 for (each sample) { 
  Initialize the sample winding number to 0. 
  Initialize the sample minimum absolute distance to ∞. 
 } 
 for (each segment in layer) { 
  for (each sample) { 
   Shoot ray from sample through segment, 
    and update running sum of winding number for sample. 
   Compute absolute distance to segment, 
    and update mininum absolute distance for sample. 
  } 
 } 
 for (each sample) { 
  Assign sign to sample distance using sample winding. 
  if (fill) Blend fill color over sample color 
        based on sample signed distance. 
  if (stroke) Blend stroke color over sample color 
        based on sample absolute distance. 
 } 
} 
Combine the resulting sample colors to obtain the pixel color. 

Several improvements could be explored in future work: 
• Both the number and distribution of samples could be adapted 

[Laine and Aila 2006]. 
• The sampling density (e.g. 𝑘) could adapt to the omplexity of 

each cell; it could even be encoded within the te l program. 
c
xe

• Letting multiple samples share the same texture 𝑦 value would 
allow reuse of horizontal intersection points. 

• Because the footprints overlap in screen space, some samples 
could be shared between pixels if hardware would permit it. 

7. Storage of nonuniform cells 
Texel programs are variable-length, so we need a data structure to 
pack them in memory.  Note that the token strings are self-
terminating, so it is unnecessary to store their sizes explicitly. 

7.1 Indirection table 
An elegant solution is to simply concatenate the token strings in 
raster-scan order into a memory buffer (Figure 12a), letting a 2D 
indirection table contain pointers to the start of the strings.  Cells 
with identical strings share use the same string instance, although 
we only perform this instancing for row-adjacent cells to preserve 
memory coherence.  For larger datasets, we introduce a two-level 
indirection scheme: one 32-bit pointer for the start of each image 
row, and a second 16-bit offset for each string within the row. 
This simple solution is possible with the DirectX 10 API, but 
unfortunately all the necessary elements (OS, drivers, etc.) did not 
arrive in time for us to demonstrate it. 
Instead we had to resort to storing data in 2D textures under 
DirectX 9. The complication is that 2D textures are actually stored 
using an internal tiling structure (optimized for 2D coherence), so 
our 1D token strips (Figure 12b) become fragmented in memory.  
Although we are able to achieve excellent packing of the strips 

into the 2D texture using a greedy best-fit heuristic, this packing 
requires modifying the order of the strips, which results in further 
loss of memory coherence. 

7.2 Variable-rate perfect spatial hashing 
Some vector graphics objects are quite sparse, so we have also 
explored replacing the indirection table with a perfect spatial hash 
function (Figure 12c) similar to [Lefebvre and Hoppe 2006].  
Thus, the undefined cells of the domain are identified using a 
domain bit image which requires only a single bit per cell.  An 
important difference is that the data records (token strings) are 
variable-sized and therefore stored as strips in the hash table.  Let 𝑠(𝑐) denote the vre and Hoppe 
2006], the hash : 

 strip size of cell 𝑐.  As in [Lefeb
 is defined using a 2D offset table Φℎ (𝑐 + Φ[𝑐 mod �̅�]) mod 𝑚ഥ , (𝑐) =

where �̅�×�̅� and 𝑚ഥ×𝑚ഥ  are the dimensions of the offset and hash 
tables respectively. 
The construction of the offset table Φ follows the same heuristic 
strategy as in [Lefebvre and Hoppe 2006]: offset vectors Φ[𝑞] are 
assigned in order of decreasing number of dependent data ele-
ments.  However, rather than counting the number |ℎଵି ଵ(𝑞)| of 
dependent data records, where ℎଵ(𝑐) = 𝑐 mod �̅�, we find that is 
better to count the total data size ∑ 𝑠(𝑐)∈భషభ()  of these depen-
dent records. 
To assign Φ[𝑞], we consider all possible offset vectors (starting 
from a random one) until finding one that does not create any 
hash collisions.  An improvement is to encourage placing strips 
adjacent to each other by first finding an invalid offset vector and 
then looking for the first valid offset. 
The indirection table better preserves data coherence and allows 
instancing of texel programs, while the hash is more concise in 
the case of sparse data. 

Cell 
Indirection table Data 

Token
string

+ 

Offset table 

mod 

mod 

1D buffer

(a)

(b)

(c)

 
Figure 12: Our data packing approaches: indirection tables and 
variable-rate perfect spatial hashing. 

8. Results and discussion 
All results are obtained using Microsoft DirectX 9 and an NVI-
DIA GeForce 8800 GTX with 768MB, in an 8002 window.  The 
examples in this section use an overlap region of size 10-20% 
(depending on the maximum stroke width), isotropic intra-
primitive antialiasing, and no inter-primitive antialiasing. 
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Timing analysis.  As discussed in Section 5.3, construction takes 
less than a second even on our most complex example.  Figure 13 
plots rendering rate of the texel program representation as a 
function of cell grid resolution, for the lion in Figure 1.  At coarse 
grid resolutions, the large cells increase the number of primitives 
per cell, which in turn increases the per-pixel rendering cost, thus 
leading to slower rendering rates.  At the other end, as the grid 
resolution becomes very fine, the majority of cells contain a single 
constant color, so rendering speed reaches a plateau. 

0

100

200

300

400

500

600

700

800

900

10 100 1000

Cell grid resolution

M
e
m

o
ry

 s
iz

e
 (

K
B

)

0

50

100

150

200

250

300

350

R
e
n

d
e
ri

n
g
 r

a
te

 (
F
P

S
)

Memory size

Rendering rate

Our shading evaluation should not be memory-bound because the 
same cell data is reused by many nearby pixels.  Indeed, we have 
run some tests where we let each pixel parse the full texel pro-
gram but avoid nearly all computation using the parsed primitives, 
and the frame rates increase by a factor of 3-4, thus indicating that 
we are presently compute-bound. Therefore, performance will 
benefit greatly from additional ALU cores in future hardware. 
The pixel shader makes several coarse-grain branching decisions, 
based on the number and types of primitives in the texel program.  
Fortunately, these decisions are identical for nearby pixels access-
ing the same program, so the SIMD branching penalty is reduced. 
Space analysis.  Figure 13 also plots memory size as a function of 
cell grid resolution.  In comparison, the original SVG text descrip-
tion is 12 KB, and its traditional parametric encoding as vertex 
and index buffers  is  about 30KB.  At coarse grid resolutions, the 
storage overhead with respect to this traditional parametric encod-
ing is small, because most vertices of the vector shape appear in 
just one image cell.  There are newly introduced vertices at the 
boundaries of the cell, and this cost diminishes as the cells are 
made larger.  As the cell grid resolution increases, storage in-
creases quadratically (just as in an ordinary image) due to the 
indirection table. 
To get good rendering performance, we have (manually) selected 
grid sizes finer than we would have desired.  Table 2 shows these 
for all datasets.  Note that the memory sizes are on the same order 
as a typical image representation (but of course texel programs 
allow resolution-independent rendering). 
Figure 14 shows a histogram of texel program sizes again for the 
lion in Figure 1.  The most common type of cell is one containing 
a single token indicating a constant color.  Figure 15 shows an 
example where a perfect spatial hash function is used to access the 
texel programs on a vector graphics with a sparse set of strokes. 
Examples.  Figure 16 presents a collection of vector graphics 
examples of various types, and Table 2 reports on their complexi-
ties, sizes, and rendering rates.  Our representation is trivial to 
map onto surfaces as demonstrated in Figure 1. 

9. Summary and future work 
Texel programs are constructed by locally specializing a vector 
graphics description to the cells of a grid using a fast algorithm.  
The texel programs provide efficient random-access evaluation of 
composited layers of filled and stroked shapes, complete with 
antialiasing and transparency. 
Avenues for future work include: 
• Extension of texel programs to allow more rendering attributes 

(e.g. gradient and texture fills), as well as instancing of sprites. 
• Improvements to the inter-primitive antialiasing algorithm. 
• Generalization of the concept of cell-based specialization to 

other applications besides vector graphics. 
 

 
Figure 13: Memory usage and rendering rate as a function of cell 
grid resolution for the lion in Figure 1. 

 

Dataset 
Input 

#Verts 

Conv.
time
(sec) 

Texel program representation 
Render

(fps) Size 
(KB) 

Cell 
grid 

Cell size 
Avg. Max.

Lion 2080 0.052 60 41×64 5.2 22 320
Boston 140399 0.901 617 512×462 4.5 100 76
Siggr. logo 2420 0.018 99 64×41 9.9 35 226
Hygieia 9922 0.085 214 109×256 4.4 12 570
Tiger 21278 0.159 267 120×128 7.3 80 107
Butterfly 5669 0.013 85 32×20 15.7 60 77
Picasso 7717 0.083 199 53×64 11.2 63 81
Denmark 101386 0.387 406 256×198 4.1 67 97
Floor plan 91887 0.368 305 512×176 6.7 60 96
CAD 22393 0.168 258 256×199 5.6 54 179
Rollerblader 4122 0.036 134 78×128 3.6 26 292
Table 2: Quantitative results, including input vertices, construc-
tion times, and texel program statistics.  (Cell sizes are in 32-bit 
words, and average cell size considers only nonempty cells.) 

 
Figure 14: Histogram of texel program complexity. 

 

 

 

Close-up with cell grid Visual. of cell complexities

Figure 15: Example using a perfect spatial hash function. 
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