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Abstract 
Previous parametric representations of smooth genus-zero surfaces require a collection of abutting patches (e.g. 
splines, NURBS, recursively subdivided polygons).  We introduce a simple construction for these surfaces using a 
single uniform bi-cubic B-spline.  Due to its tensor-product structure, the spline control points are conveniently 
stored as a geometry image with simple boundary symmetries.  The bicubic surface is evaluated using subdivision, 
and the regular structure of the geometry image makes this computation ideally suited for graphics 
hardware.  Specifically, we let the fragment shader pipeline perform subdivision by applying a sequence of masks 
(splitting, averaging, limit, and tangent) uniformly to the geometry image.  We then extend this scheme to provide 
smooth level-of-detail transitions from a subsampled base octahedron all the way to a finely subdivided, smooth 
model.  Finally, we show how the framework easily supports scalar displacement mapping. 

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Boundary Representations 

 

1. Introduction 

Smooth surface representations are pervasive in off-line 
rendering systems [e.g. DeRose et al. 1998], because they 
avoid the rendering artifacts of faceted geometry, and reduce 
memory requirements by allowing a more compact descrip-
tion of shape.  In this paper, we present a smooth surface 
scheme that can be efficiently evaluated using the fragment 
shaders in currently available graphics hardware. 

Graphics Hardware.  GPUs are evolving from fixed func-
tion pipelines to flexible programmable processors.  Fragment 
shaders now support longer programs and a larger instruction 
set [Lindholm et al. 2001].  Whereas vertex shaders operate 
on each vertex independently, fragment shaders gather data 
using texture read operations.  This flexibility can be applied 
to non-traditional uses, such as image-processing and non-
photorealistic effects [Mitchell 2002]. 

Recently, the rasterization pipeline has begun to support 
floating-point types, thereby allowing geometry itself to flow 
through the GPU as a texture signal.  For instance, even ray 
tracing computations can be implemented in the fragment 
shaders [Purcell et al. 2002].  Because GPU’s contain several 
fragment shaders operating in parallel, there is significant 
opportunity for speed-up over a sequential CPU computation. 

These fragment shaders gather data through texture accesses, 
where texture elements (texels) are organized into regular 
grids (1D, 2D, 3D).  Signals over surfaces are thus typically 
resampled into 2D images parametrized onto the surface – so 
called texture atlases.  In contrast, the surface geometry is 
traditionally represented using irregular (triangle) meshes. 

Geometry images.  Managing the irregular meshes that arise 
in most smooth surface representations is a daunting task for 
a fragment shader program.  To allow geometry to flow more 
naturally as a signal through the current GPU architecture, 
surfaces should be represented as regular grids if possible. 

The geometry images introduced by Gu et al. [2002] repre-
sent an arbitrary surface using a regular 2D grid sampling.  
To permit this sampling, the surface is parametrized onto a 
square by first cutting the mesh along a network of edge 
paths.  The generality of the cutting procedure permits 
treatment of surfaces with boundaries and of arbitrary genus.  
However, the drawback in our smooth surface setting is that 
the arbitrary topology of the cut can result in complicated 
continuity constraints along the boundary of the square 
domain. 

For our purposes, we use a different parametrization for 
geometry images, introduced by Praun and Hoppe [2003] and 
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Figure 1: Overview of our smooth surface representation.
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summarized in Section 4.  Although the construction is 
limited to closed, genus-zero meshes, it uses a much simpler, 
topologically symmetric cut curve.  Exploiting the symme-
tries of this cut, we develop a scheme to represent an entire 
closed surface as a single uniform bicubic B-spline patch 
(Figure 1).  This patch is automatically C2 on its interior.  
More importantly, the closed patch is also C2 along the cut 
curve except at four extraordinary vertices.  For these four 
vertices, we develop a simple linear constraint on the 
neighboring control points that ensures the closed patch is C1 
at these vertices.   

Subdivision.  Because of the tensor-product structure, the 
patch control points can be stored as a geometry image.  To 
render the smooth patch, we subdivide this image using the 
GPU.  All subdivision computations involve regular 3x3 
masks.  These masks are applied uniformly to the geometry 
image using simple fragment shader programs.  After subdi-
vision, we use a prototype RENDER_TO_VERTEX OpenGL 
extension to write the subdivided image to vertex buffers for 
final rendering.  This scheme is easily generalized to include 
continuous level-of-detail varying from a base octahedron 
(generated by subsampling) to a highly subdivided, smooth 
model.  We also present a simple extension of the scheme to 
support scalar displacement mapping. 

To conclude, we compare the performances of CPU and GPU 
implementations of our scheme.  In practice, the GPU imple-
mentation exhibits an order of magnitude increase in 
performance over the CPU version. 

2. Previous work 

Subdivision surfaces.  Bolz and Schröder [2002] accelerate 
the rendering of subdivision surfaces by exploiting SIMD 
instructions on the CPU.  Pulli and Segal [1996] evaluate 
Loop surfaces on geometry engines by pairing up adjacent 
triangles in the base mesh.  The subdivided neighborhoods 
then have mostly a regular 2D structure, except for auxiliary 
arrays to handle arbitrary vertex valences.  Bischoff et al. 
[2000] process triangles individually, and use fast forward 
differencing to reduce memory needs. 

Polynomial surfaces.  OpenGL has interface functions to 
evaluate polynomial curves and surfaces.  These have been 
implemented within geometry engines on some SGI com-
puters, but more commonly these operations are performed 
on the CPU by the driver.  A similar DrawRectPatch interface 
is exposed in DirectX. 

Curved PN-triangles.  Vlachos et al. [2001] describe a 
hardware scheme that constructs a smooth patch for each 
triangle in a mesh.  The patch is defined using only the 3 
vertex positions and normals, and therefore requires no 
additional memory bandwidth.  It significantly improves the 
silhouettes of coarse models, but unfortunately does not 
provide C1 surface continuity. 

Surface splines.  Several schemes represent surfaces of 
arbitrary topology using a network of spline patches, e.g. 
[Loop 1994, Peters 2000].  Forsey and Bartels [1988] repre-
sent intricate planar and toroidal shapes using a single B-
spline patch, but use adaptive refinement that requires a patch 

network for rendering.  Note that our fragment-shader-based 
subdivision scheme could be used to efficiently evaluate each 
individual patch in such networks. 

Unlike these previous techniques, our method exploits the 
powerful fragment shading pipeline of modern GPU’s to 
efficiently evaluate the smooth surface.  Also, we represent an 
entire spherical model conveniently as a single patch. 

3. Geometry image representation 

Overview.  Our geometry images are built by parametrizing a 
given surface over an octahedral domain, and then unfolding 
the domain into a square image by introducing an “X-cut” 
centered at a vertex x. 

a

b
d x

x x 

x x 

b d

c 

a 

c  

The resulting boundary topology is extremely simple – each 
side of the square has reflection symmetry about its midpoint. 

This parametrized square is then sampled using a regular 2D 
quadrilateral grid to create a geometry image.  The entries in 
the geometry image g are indexed as 
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where the cut symmetry imposes the image boundary condi-
tions ,1 - ,1i m ig g= , 1, 1, -i m ig g= , -1, -1, -m i m m ig g= , and 

, -1 - , -1i m m i mg g= . 

We refer to the quadrilateral mesh formed by the grid g as the 
opened mesh.  When its boundaries are fused back together, 
we refer to it as the closed mesh. 

Note that the 4 corners of the opened mesh fuse into the same 
vertex x, and thus this vertex x has valence 4 in the closed 
mesh.  Indeed, the only extraordinary (non-valence-4) verti-
ces in the closed mesh are the 4 boundary midpoints (a, b, c, 
d), which have valence 2. 

Bicubic surface.  To define a bicubic surface from the 
geometry image, we begin by padding the image with a one-
sample-wide border.  These border samples are defined by 
traversing across the X-cut on the closed mesh to find 
neighboring interior samples.  More precisely, the samples 
are obtained by transitively applying the rules: 
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The bicubic surface defined by this padded geometry image is 
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           , [1, 1]s t m R∈ − ⊂ , 

where ( )N s  is the uniform cubic B-spline basis function. 
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Due to the symmetric structure of the padding rules, the 
boundaries of this surface patch join along the X-cut to form a 
closed, genus-zero surface.  Note that the parametrization for 
this surface patch is C2 everywhere (including its boundaries).  
As a result, the corresponding surface patch is C2 everywhere 
except for those points where the derivatives of the pa-
rametrization vanish identically.  

Unfortunately, at the four cut vertices a, b, c, and d (which 
have valence 2 in the closed mesh), the parametrization has 
derivatives that are zero for any choice of g .  For example, 
the cut vertex ,1ha g=  (with / 2h m= ) has a padded 
neighborhood of the form 

1,2 ,2 1,2

1,1 ,1 1,1

1,2 ,2 1,2
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Applying the tangent masks shown in Table 1 at a  yield zero 
derivatives independent of the values of the control points.  
As a consequence, the resulting surface patch usually has a 
cusp at a (see Figure 2).   

However, if the position of the cut vertex gh,1 is constrained to 
lie at the centroid of its four neighbors in the mesh, 

( )1
,1 1,1 ,2 1,2 1,24h h h h hg g g g g− − += + + + , (2) 

the cusp is suppressed.  In particular, the perturbed surface is 
C1.  Figure 2 shows the smoothing effect of this perturbation.  
The appendix contains a short analysis of the smoothness of 
the perturbed scheme.  

geom. image g0 subdivided g3 without 
constraint 

with 
constraint 

Figure 2: Subdivision behavior near valence-2 vertex. 
 

surface sphere flat octahedron image g 

 

 

Figure 3: Geometry image parametrization. 

4. Geometry image creation 

Parametrization.  As described in [Praun and Hoppe 2003], 
surface parametrization proceeds in 3 steps (Figure 3).  The 
mesh is first parametrized over a sphere.  This parametriza-
tion minimizes a stretch metric to reduce undersampling of 
complicated geometric shapes.  Second, the sphere is mapped 
onto a flattened octahedron, again using a stretch-minimizing 
map.  Finally, the octahedron is unfolded on a square geome-
try image using the X-cut.  The benefit of using a flattened 
octahedron as the domain is that it unfolds isometrically. 

Fitting.  Next, we use this parametrization to construct a 
geometry image whose associated surface patch ( , )P s t  
accurately fits the original surface.  Of course, we cannot 
simply use point samples of the original surface as the control 
points for the bicubic patch ( , )P s t  since the B-spline 
patches are approximating in nature.  Instead, we sample the 
original surface on a fine grid using the parametrization and 
then compute the bicubic surface patch ( , )P s t that best fits 
the data in a least-squares sense.  This optimization problem 
is a linear one that we solve using sparse conjugate-gradients.  
During optimization, we effectively eliminate the 4 linear 
constraints at the cut vertices {a, b, c, d} by removing these 
vertices from the set of free variables – they are always 
defined as the centroids of their neighbors. 

The bicubic surface that results from this fitting optimization 
sometimes suffers from ripples (undula-
tions), as shown on the right.  To obtain 
a smoother surface (as in Figure 7), we 
add a simple fairness functional that 
measures the squared distance between 
each control point and the centroid of its 
neighbors.  (Alternatively, we could 
integrate fairness of the limit surface as 
in [Halstead et al. 1993].) 

The automatic preprocess to generate the geometry images 
takes 10-27 minutes for the models (70K-200K faces) in this 
paper on a 3GHz Pentium4 PC.  The bottleneck is the spheri-
cal parametrization step.  

5. Subdivision using Graphics Hardware 

Bicubic subdivision.  Given the closed mesh g0 associated 
with geometry image g, the B-spline surface patch ( , )P s t is 
the limit g∞ of a subdivision process g0, g1, g2, g3,…. applied 
to the initial mesh g0 (see Figure 4).  Each subdivision step 
gk+1=S[gk] splits all quadrilaterals into 4 children, inserting 
new vertices on each edge and face.  These new vertices in 
gk+1 are positioned as local affine combinations of vertices gk. 

 
g0    g1    g2        g3 …    

Figure 4: Three steps of bicubic subdivision. 
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splitting L averaging A limit E tangent Ts 

Table 1: Masks for bicubic subdivision.  (Tt is Ts transposed.) 

The subdivision operator S can be decomposed into two 
simpler steps, a splitting step L, and an averaging step A [e.g. 
Lane and Riesenfeld 1980].  For B-spline surfaces, the 
splitting operator L performs bilinear quadrisection of the 
faces, positioning new vertices in gk+1 at the centroids of their 
neighboring 2 or 4 vertices in gk.  The averaging operator A 
applies a linear filter kernel to all vertices.  These linear 
combinations are denoted by the masks shown in Table 1. 

After a finite number of subdivision steps, the vertices of the 
subdivided surface gk can be sent to their limit positions pk on 

( , )P s t by evaluating a limit mask E[gk].  Perturbing the 
vertices to their limit position lets the mesh more closely 
approximate the smooth surface ( , )P s t .  The normals nk to 

( , )P s t  at p are the cross product of two tangent vectors 
computed by applying the tangent masks Ts and Tt to gk.  (For 
shading, nk should be unit length, so the cross product is 
normalized via the function unit.) 

As a concrete example, to render the bicubic surface subdi-
vided 3 times, we compute its limit positions p3 and their 
normals n3 as: 

g1 = A[L[g0]],    g2 = A[L[g1]],    g3 = A[L[g2]], 

p3 = E[g3],   n3 =  unit[Ts[g
3]×Tt[g

3]]  . 

GPU-based implementation.  We store geometry images in 
off-screen pixel buffers containing three 24-bit floating-point 
channels.  We have found that 24 bits is sufficient precision 
for all the necessary arithmetic.  The pixel buffers are config-
ured to support both read and write operations. 

All the masks in Table 1 are implemented using fragment 
shader programs.  As an example, let us consider the limit 
operation g’ = E[g].  The buffer g is bound as the source 
texture, and the buffer g’ is assigned as the rendering destina-
tion.  A square is drawn that covers all the destination pixels.  
The rasterizer thus generates fragments to be “shaded” by the 
fragment processor for every pixel.  At each pixel, the 
fragment program reads the appropriate texels from the 
source texture (i.e. vertices in g) and applies the appropriate 
mask.  The resulting floating-point coordinates are written 
into the destination buffer g’. 

Given an image gk of size [0..m]2, the splitting operation L[gk] 
produces a new image of size [0..2m]2 by applying the masks 
in Table 1.  Note that this process is equivalent to bilinearly 
filtering gk on the grid of half integers ranging over [0..m]2.  
Since current graphics cards do not have dedicated hardware 
to perform this type of filtering on floating-point textures, we 
must perform the operation in a fragment program. 

Given integer texture coordinates {i, j} in the range [0..2m]2, 
our goal is to bilinearly sample the image gk at the half-
integer texture coordinates {i/2, j/2}.  At first glance, this 
sampling process might appear to be non-uniform (and thus 

difficult to implement in a fragment shader) since the expres-
sions used in computing the new texture depends on whether i 
and j are odd or even.  However, the bilinear interpolation can 
be treated as a uniform operation by using the floor operation 
in the fragment shader.  If {I, J} is the integer part of {i/2, 
j/2} and { , }α β  is the fractional part, the {i, j}th entry of 
L[gk] is exactly 

, 1, , 1 1, 1(1 )(1 ) (1 ) (1 )k k k k

I J I J I J I Jg g g gα β α β α β α β+ + + +− − + − + − +  

After applying the averaging mask A to L[gk], we crop the 
resulting image on all sides by one pixel to create the subdi-
vided image gk+1 with dimensions [0..2m-2]2.  The cropped 
samples are no longer needed since border padding maintains 
a constant size of one throughout subdivision. 

While the expression for computing the unit normals nk may 
appear complicated, both tangent masks refer to the same 8 
neighbor samples, and both the cross product and normaliza-
tion require only a few instructions. 

Having obtained limit points pk and normals nk, we re-cast 
these off-screen buffers as a vertex stream.  This ability to 
interpret floating-point images as vertices is made possible by 
a prototype RENDER_TO_VERTEX extension to OpenGL.  
The alternative, reading the buffer back into host memory and 
sending the vertices back to the graphics card, would be 
prohibitively expensive.  Finally, we feed the vertex stream 
through the GPU to render the subdivided surface. 

For efficiency, we pre-allocate image buffers of the appropri-
ate sizes to store {g1, g2, …, gk, pk, nk} where k is the desired 
number of subdivision levels.  Several models can share the 
same set of subdivision buffers since these are only used to 
store temporary information. 

Continuous level-of-detail.  To maintain real-time perform-
ance, the number of subdivision levels k can be adapted for 
each model based on factors such as viewing distance, model 
importance, and overall scene complexity [Funkhouser 1993].  
Even though we send vertices to their limit positions, instan-
taneously changing the subdivision level creates visual 
“pops.”  Our solution is to smoothly transition between levels 
using linear interpolation. 

Given a continuous level of subdivision 
k α+  with 0 1α< ≤ , we wish to 
compute a mesh kp α+  that varies 
continuously as a function of α  be-
tween pk and pk+1.  As a preliminary to 
blending, we first triangulate pk and pk+1 
such that all dotted diagonals of the 
resulting triangulation are oriented as shown to the right.  
(This choice of triangulation avoids the possibility of having 
the diagonals of quads flip during subdivision.)  Next, we 
linearly subdivide the triangles of pk.  Note that this subdivi-
sion yields a mesh with the same connectivity as pk+1 while 
retaining the geometric shape of pk.  Finally, we linearly 
interpolate between these two meshes as a function of α .  To 
save texture memory, rather than computing pk=E[gk] as an 
image, we instead gather the samples of pk by subsampling 
pk+1.  This also reduces the number of texture reads in the 
linear interpolation step. 
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We employ a similar blending process to construct a set of 
normals kn α+ for the mesh kp α+ .  Given the normals nk for 
pk, we first linearly subdivide these normals.  To obtain 
blended normals, we linearly interpolate between these 
linearly subdivided normals and nk+1.  In a purely diffuse 
shading model, applying Gouraud shading to these linearly 
subdivided normals over the linear subdivision of pk repro-
duces the same pixel intensities generated by Gouraud 
shading pk using the normals nk.  As a result, the diffuse 
shading of the model exhibits no “popping” of intensity. 

Unfortunately, specular vertex shading is nonlinear due to the 
use of exponentiation in the shading model.  To obtain 
smooth transitions while performing specular shading, we 
instead perform Phong shading and linearly interpolate unit 
normals along edges of the mesh.  Fortunately, the latest 
graphics hardware supports performing the Phong calculation 
in a fragment shader. 

Subsampling images.  When the rendered model generates 
only a few pixels (such as when the model is distant), fewer 
polygons are required to accurately render the model.  In 
particular, the mesh g0 may already have more polygons than 
necessary.  The simple grid structure of the geometry image 
allows for convenient subsampling, which can be viewed as a 
form of “negative” subdivision.  If the unpadded geometry 
image g0 has size (2k+1+1)2, repeated subsampling of the 
interpolating mesh p0 yields a sequence of increasingly 
simplified interpolating meshes p-1, p-2, …, that terminates in 
a base octahedron p-k.  Note that the use of subsampling 
allows the previous level-of-detail blending to work for these 
meshes without modification.  Figure 5 shows an example of 
this subsampling for the gargoyle.  We can thus smoothly 
transition between these approximations in real-time. 

    
p -4    p -3    p -2    p -1    p 0    p 1    

Figure 5: Subsampling of limit mesh for 
“negative” subdivision. 

Displacement mapping.  Detail at level k can be added to the 
smooth surface using a scalar displacement map dk.  The 
image dk typically has higher resolution than the control mesh 
g0.  Because it only requires one channel, and that one 
channel can be quantized to fewer than 24 bits, it requires 
much less space than storing detail in the geometry image 
itself.  With the geometry image representation, the pa-
rametrization of dk over g0 becomes implicit, thus removing 
the need for texture coordinates.  Applying a displacement 
map dk in the fragment shader consists of computing pk + dk 

nk .  An example is shown in Figure 6. 

 

 

g0 (33x33) p3            d3 (257x257) p3+d3 n3   

Smooth limit surface Displaced surface 

Figure 6: Scalar displacement mapping applied to 
limit surface. 

Implementation details.  The precise breakdown of the 
evaluation algorithm into fragment shading passes depends 
on the capabilities of the GPU.  On the currently available 
ATI Radeon 9700 and 9800, we have separate shading passes 
for linear subdivision, averaging, exact limit position, exact 
limit normals, and the transitional blending based on subsam-
pling.  If a larger number of texture reads were available in 
future GPU’s, the full subdivision step (linear subdivision 
plus averaging) could be performed in one operation, and 
perhaps the limit operation could also be included. 

6. Results 

To gather performance statistics, we implemented two 
separate programs that generate subdivided surfaces.  The 
first is an efficient CPU implementation of subdivision (not 
using SSE or other SIMD instructions) running on a high-end 
personal computer (Intel P4 2.5GHz).  The second program is 
a GPU implementation that subdivides the model using the 
technique described in the paper.  The GPU implementation 
is tested on both the ATI Radeon 9700 and the ATI Radeon 
9800.  The Radeon 9800 runs at a higher clock speed, and has 
slightly more bandwidth than the Radeon 9700, but is other-
wise identical for our purposes.  Our GPU implementation 
forces the graphics card to flush the rendering pipeline using 
the OpenGL command glFinish() both before and after the 
subdivision process.  We record the elapsed time between the 
two pipeline flushes, thus ensuring that the GPU is not 
performing other tasks when the timing starts, and that the 
GPU is done with the subdivision calculation when the timing 
ends.  Because glFinish() has a large overhead and the drivers 
used in our implementation are preliminary, we expect better 
performance in the future. 

Since each new level of subdivision generates a model with 
approximately four times as many vertices as the previous 
level, one would expect subdivision times to scale similarly.  
The CPU implementation behaves as expected.  The GPU 
implementation, however, has a non-trivial setup overhead 
for the source and destination buffers, so it does not take four 
times longer to subdivide to one more level.  The actual 
subdivision computation dominates the setup overhead only 
for large geometry images or with many subdivision levels. 
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Performance analysis of the GPU-based implementation is 
difficult due to the fact that the inner workings of the graphics 
card are not published.  Using the information available to us, 
we estimate the utilization rates of GPU bandwidth and 
computation (see Table 2), and conclude that our method is 
currently compute-limited rather than bandwidth-limited.  
This conclusion is supported by three observations: 

•  The estimated consumed bandwidth is less than 15% of 
the theoretical maximum bandwidth available. 

•  The estimated number of fragment shader cycles used 
for subdivision coincides with the maximum possible, given 
the GPU clock speeds and number of shader units. 

•  The increase of 17% in clock speed and 10% in band-
width between the two cards yields an increase of almost 
15% in performance for our application. 

We want to stress that these resource utilization numbers (for 
both bandwidth and computation) should be treated as very 
rough estimates.  Indeed, bandwidth utilization is complicated 
by factors such as unknown caching schemes and bandwidth 
use by other buffers or by other GPU tasks.  Similarly, 
computation utilization is complicated by issues such as 
unknown optimizations to the fragment programs by the 
graphics driver and unknown cycle counts for individual 
instructions. 

Overall, the GPU implementation is up to one order of 
magnitude faster than our CPU implementation (Table 2). 

As another CPU comparison number, Bolz and Schröder 
[2002] report a rate of almost 20 million triangles per second 
on a Pentium 4 when subdividing a 384-quad mesh to 6 
levels.  They exploit SIMD instructions and maximize 
memory cache coherency.  It is important to note that their 
method only calculates the tangents to the surface, and not the 
actual surface normal as in our implementation.  Computing 
the surface normal requires an additional vector cross-product 
and normalization, which incur a significant cost on the CPU. 

Rendering is currently implemented using triangle strips that 
index into the computed vertex array.  The current API 
requires us to send these indices every frame, even though 
they are constant.  The indices follow a simple grid pattern, so 
they could easily be computed automatically in future GPU’s. 

7. Summary and future work 

In summary, we have developed a scheme for modeling a 
closed genus-zero surface as single bicubic surface patch.  
This patch is C2 everywhere except for four extraordinary 
vertices where the patch is C1.  We have demonstrated a 
simple approach to subdividing this surface patch that in-
cludes smooth level-of-detail transitions and displacement 
mapping.  By representing the patch as a geometry image, we 
are able to realize all these computations using the GPU 
fragment shader pipeline. 

 

  Subdivision Level (k) 

  1 2 3 4 

Time (ms) 1.03 1.38 3.23 10.4 

Triangle rate ( M∆/s) 7.2 21.2 36.0 44.6 

Bandwidth utiliz. (%) 2.2 6.2 10.5 13.1 

G
P

U
 (R

 9
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Computation utiliz. (%) 14.3 46.7 81.1 101 

Time (ms) 0.93 1.30 2.91 9.06 

Triangle rate ( M∆/s) 8.0 22.5 40.0 51.1 

Bandwidth utiliz. (%) 2.1 6.0 10.6 13.6 

G
P

U
 (R
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80
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Computation utiliz. (%) 13.6 42.4 77.0 99.0 

Time (ms) 1.3 5.5 22.8 90.7 

C
P

U
 

Triangle rate ( M∆/s) 5.9 5.3 5.1 5.1 

Table 2: Timing results for subdividing a geometry 
image of size 31x31, including computation of limit 
positions and normals. 

Our method takes advantage of the widening gap between the 
processing powers of the GPU and CPU.  In the future, we 
believe that other computations such as more sophisticated 
rendering techniques or computational simulations may profit 
from being computed on the GPU.  The regular structure of 
geometry images will be a key to performing these computa-
tions on the GPU. 

In terms of modeling and rendering smooth surfaces, future 
work will involve handling more general types of surface 
models such as those with handles and boundaries.  Unfold-
ing these surfaces involves cut curves with more complicated 
topologies that lead to extraordinary vertices of arbitrary 
valence on the boundary of the geometry image.  Introducing 
creases into the interior of the geometry image is also an area 
of future work.  Crease curves and corners would allow a 
larger class of models to be represented with geometry 
images. 

Currently, parametrization misalignment in areas of high 
curvature sometimes gives rise to surface rippling. This may 
be overcome in the future by optimizing the parametrization. 

We have shown how to perform some basic geometry 
manipulation in graphics hardware, but in the future one can 
envision using the hardware for many other types of geomet-
ric algorithms. 
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Figure 7: Additional examples of subdivided surfaces. 
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Appendix: Smoothness at vertices a, b, c, d 

Our task is to show that applying bicubic subdivision to the 
perturbed geometry image yields a smooth (C1) surface at the 
cut vertices a, b, c, d.  We first analyze the smoothness of the 
unperturbed scheme at the cut vertex a.  Following Equation 
1, the bicubic subdivision process for the one-ring of the cut 
vertex a has the form (with 2

mh = ) 
1

,1 ,1
1
1,1 1,1
1 1

,2 ,232
1
1,2 1,2
1
1,2 1,2

18 6 6 1 1
12 12 4 2 2
12 4 12 2 2
8 8 8 8 0
8 8 8 0 8

k k
m h

k k
m h
k k
m h

k k
m h
k k
m h

g g
g g
g g

g g
g g

+

+
− −
+

+
− −
+
+ +

           
 =   
            

   

. 

This subdivision matrix S has eigenvalues 1, 1
4 , 1

4 , 1
4 , 1

16 .  
Unfortunately, the unperturbed scheme is only C0 due to the 
fact that the subdominant eigenvalue 1

4  has multiplicity 
three (as opposed to multiplicity two in smooth schemes).  
Technically, the three eigenfunctions associated with the 
eigenvalues 1

4  provide three independent tangent directions 
at a and allow a cusp in the resulting limit surface (see 
Chapter 8 of [Warren and Weimer 2001] for details.) 

However, note that one of the right eigenvectors of S corre-
sponding to 1

4  is exactly (-4,1,1,1,1).  If we perturb gh,1 as 
done in Equation 2,  

( )1
,1 1,1 ,2 1,2 1,24

k k k k k
h h h h hg g g g g− − += + + + , 

the effect on the subdivision process is to suppress the 
contribution of the eigenfunction corresponding to this 
eigenvector in the limit surface at a.  More concretely, the 
subdivided control points again satisfy the same centroid 
relation 

( )1 1 1 1 11
,1 1,1 ,2 1,2 1,24

k k k k k
m m m m mg g g g g+ + + + +

− − += + + + . 

Since the control point k
hg is dependent in this new scheme, 

we can derive a new subdivision matrix of size four involving 
the remaining four independent control points of the form 

1
1,1 1,1
1

1,2 ,2
1 32
1,2 1,2
1
1,2 1,2

15 7 5 5
7 15 5 5

10 10 10 2
10 10 2 10

k k
m h
k k
m h

k k
m h
k k
m h

g g
g g

g g
g g

+
− −
+

+
− −
+
+ +

           =             

. 

The subdivision matrix for this perturbed scheme has a 
spectrum of the form 1, 1

4 , 1
4 , 1

16 .  To determine the 
smoothness of this subdivision scheme, we must extend the 
subdivision matrix to the two-ring of a due to the support of 
the B-spline basis functions.  The resulting extension pro-
duces eigenvalues of magnitude less than or equal to 1

8 .  
Therefore, the two subdominant eigenfunctions correspond-
ing to 1

4  define two tangent directions and the perturbed 
scheme now has a well-defined tangent plane at a.  To 
complete the proof of smoothness, we use the techniques of 
[Reif 95] to show that the characteristic map for this scheme 
is regular and injective (Figure 8), and thus the scheme is C1 
at a. 

Finally, as shown in [Peters and Umlauf 2001], subdivision 
schemes with the spectrum 1, , ,...α α α 2, have bounded 
curvature at the extraordinary vertex.  Unfortunately, extend-
ing the subdivision process to the two-ring of a introduces 
several new eigenvalues of size 1

8  to the spectrum of the 
extended subdivision matrix.  Thus, the subdivision scheme 
while smooth has unbounded curvature at a. 

 

 
Figure 8: The characteristic map at an extraordinary 

vertex of valence two.  
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