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Figure 1: Demonstration of spherical parametrization and subsequent resampling into a geometry image. 

Abstract 
The traditional approach for parametrizing a surface involves 
cutting it into charts and mapping these piecewise onto a planar 
domain.  We introduce a robust technique for directly parametriz-
ing a genus-zero surface onto a spherical domain.  A key 
ingredient for making such a parametrization practical is the 
minimization of a stretch-based measure, to reduce scale-
distortion and thereby prevent undersampling.  Our second contri-
bution is a scheme for sampling the spherical domain using 
uniformly subdivided polyhedral domains, namely the tetrahe-
dron, octahedron, and cube.  We show that these particular semi-
regular samplings can be conveniently represented as completely 
regular 2D grids, i.e. geometry images.  Moreover, these images 
have simple boundary extension rules that aid many processing 
operations.  Applications include geometry remeshing, level-of-
detail, morphing, compression, and smooth surface subdivision. 
Keywords:  texture mapping, remeshing, geometry images, meshes. 

1. Introduction 
Surface parametrization.  To associate a given surface with a 
planar domain, the traditional approach is to 
partition the surface into charts, parametrize 
these in the plane, and pack them into a 
texture atlas, as shown in the example on 
the right [e.g.  Maillot et al. 1993; Cignoni et 
al. 1998; Sander et al. 2001; Lévy et al. 
2002].  One main drawback of an atlas is the 
presence of visible seams on the surface.  Sheffer and Hart [2002] 
try to hide these seams in high-curvature regions. 
An alternative is semi-regular remeshing whereby 
the connectivity of the surface charts is used to form 
a domain complex that is then regularly subdivided 
[e.g. Eck et al. 1995; Lee et al. 1998; Kobbelt et al. 
1999; Guskov et al. 2000; Lee et al. 2000; Wood et 
al. 2000].  Because the connectivity of the domain 
complex itself is irregular, applying a texture image 
to the surface requires storing a parametrization.  

Recently, Gu et al. [2002] introduced geometry images, in which 
geometry is resampled into a completely regular 2D grid. The 
process involves cutting the surface into a 
disk using a network of cut paths, and then 
mapping the boundary of this disk to a 
square.  Both geometry and other signals are 
stored as 2D grids, with grid samples in 
implicit correspondence, obviating the need 
to store a parametrization.  Also, the bounda-
ry parametrization makes both geometry and textures seamless. 
In all three approaches, the surface is first cut into one or more 
disk-like charts using a network of cut paths, and a parametriza-
tion is formed piecewise on each chart.  The a priori construction 
of the chart boundaries or cut paths is heuristic, and constrains the 
quality of the attainable parametrization.  In texture atlases, both 
the number of charts and their surface extents are selected heuris-
tically to minimize parametric distortion onto planar polygons, 
while also maintaining good packing efficiency.  In semi-regular 
remeshing, surface charts are selected to have low-distortion maps 
onto regular domain faces, and to have approximately the same 
size.  Finally, in geometry images, the surface is heuristically cut 
into a disk that hopefully maps well onto a square. 
Sorkine et al. [2002] take the interesting approach of parametriz-
ing a chart during its incremental growth, to bound distortion.  
Thus, the creation of cut paths is guided by the parametrization. 
In this paper, we construct for a common class of models a con-
tinuous, unconstrained parametrization without any cutting. 

Spherical parametrization.  Geometric models are often de-
scribed by closed, genus-zero surfaces, i.e. deformed spheres.  For 
such models, the sphere is the most natural parametrization 
domain, since it does not require cutting the surface into disk(s).  
Hence the parametrization process becomes unconstrained.  Even 
though we may subsequently resample the surface signal onto a 
piecewise continuous domain, these domain boundaries can be 
determined more conveniently and a posteriori on the sphere. 
While planar parametrization of mesh charts has been studied 
extensively, there is relatively less work on parametrizing a mesh 
as a whole onto a spherical domain, as reviewed in Section 3.1. 
Spherical parametrization proves to be challenging in practice, for 
two reasons.  First, for the algorithm to be robust it must prevent 
parametric “foldovers” and thus guarantee a 1-to-1 spherical map.  
Second, while all genus-zero surfaces are in essence sphere-
shaped, some can be highly deformed, and creating a parametriza-
tion that adequately samples all surface regions is difficult. 

 



 

To address these challenges, our parametrization algorithm bor-
rows techniques from Sander et al. [2001, 2002].  We achieve 
robustness using a coarse-to-fine optimization strategy, and 
penalize undersampling using a stretch-based parametrization 
metric (Section 3).  Intuitively, stretch measures how distances in 
the domain get scaled onto the surface.  Large stretch in any 
direction about a surface point implies that the reconstruction of 
the surface signal from a domain-uniform sampling will lose high-
frequency surface detail. 
Once a spherical parametrization is obtained, a number of applica-
tions can operate directly on the sphere domain, including shape 
analysis using spherical harmonics [Funkhouser et al. 2003; 
Quicken et al. 2000], compression using spherical wavelets 
[Schröder and Sweldens 1995], and mesh morphing [Alexa 2002]. 

Spherical remeshing.  Many techniques rely on sampled repre-
sentations, and unfortunately, the only truly uniform samplings of 
the sphere are given by the vertices of the 5 Platonic solids (ico-
sahedron being the most complex with 20 vertices). 
In computer graphics, spherical functions such as environment 
and visibility maps are often represented using cube maps [Greene 
1986].  While this cube projection is hardware-efficient, it creates 
a rather non-uniform spherical sampling (with stretch varying by a 
factor of 3).  Unlike in environment maps, spherical directions 
have no special meaning for surface parametrizations.  Thus we 
are free to construct maps that distribute samples more uniformly. 
As a sampling pattern, we use the vertices of uniformly subdivid-
ed regular polyhedra, namely the tetrahedron, octahedron, and 
cube.  We explore maps with minimal stretch from these domains 
to the sphere (Section 4.2). 

Geometry images.  The semi-regular samples that we construct 
over the polyhedral domains can in fact be cut and unfolded such 
that they correspond 1-to-1 with a regular 2D grid (Section 4.1).  
We use these unfoldings to resample our spherical parametriza-
tions into geometry images (see Figure 1). 
The simple 2D grid structure of geometry images is ideally suited 
for many processing operations.  For instance, they can be ren-
dered by traversing the grids sequentially, without expensive 
memory-gather operations (such as vertex index dereferencing or 
random-access texture filtering).  Geometry images also facilitate 
compression and level-of-detail control. 
The geometry images introduced by Gu et al. [2002] support 
surfaces of arbitrary genus by allowing an arbitrary surface cut.  
However, the cut topology must be stored explicitly for lossy 
decompression, and it constrains level-of-detail mip-mapping. 
In contrast, our construction is specialized to genus-zero surfaces, 
and the topology of our polyhedral cuts is fixed and simple.  The 
cuts give rise to symmetry rules at the image boundaries, which 
enable morphing, better level-of-detail control, more effective 
compression, and the creation of smooth surfaces. 
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Figure 2: Overview of the parametrization process. 

2. Approach overview 
Given a surface mesh 𝑀, our goal is to create a geometry image 𝐼 
that approximates it.  We first create a spherical parametrization 
of the surface (𝑆 → 𝑀).  Next, we similarly create a spherical 
parametrization (𝑆 → 𝐷) of a domain polyhedron 𝐷, chosen to be 
a tetrahedron, an octahedron, or a cube.  Finally, we unfold the 
domain into the image (𝐷 → 𝐼).  All these maps are invertible, and 
their composition provides a map 𝐼 → 𝐷 → 𝑆 → 𝑀 (see Figure 2). 
For remeshing, we uniformly sample the domain polyhedron at 
the vertices of a regular 𝑛-tessellation (𝑛 + 1 vertices on each 
domain edge).  As explained in Section 4.1, the unfolding (𝐼 ↔ 𝐷) 
is not an isometry and we are not concerned with its metric 
distortion – it is a convenient scheme for associating the domain 
samples 1-to-1 with the 2D grid samples of the image. 
To avoid undersampling of the surface mesh, we seek to minimize 
the stretch of the map 𝐷 → 𝑀.  We do this by minimizing stretch 
on the two maps 𝐷 → 𝑆 and 𝑆 → 𝑀.  Both maps involve the 
computation of a spherical parametrization, as discussed next. 

3. Spherical parametrization 
Given a triangle mesh 𝑀, the problem of spherical parametriza-
tion is to form a continuous invertible map 𝜙: 𝑆 → 𝑀 from the 
unit sphere to the mesh.  The map is specified by assigning each 
mesh vertex 𝑣 a parametrization 𝜙−1(𝑣) ∈ 𝑆.  Each mesh edge is 
mapped to a great circle arc, and each mesh triangle is mapped to 
a spherical triangle bounded by these arcs. 

3.1 Previous work 
Kent et al. [1992] propose several spherical parametrization 
schemes.  For general shapes, they simulate a balloon inflation 
process, but are not able to guarantee a 1-to-1 map. 
Alexa [2002] uses a spring-like relaxation process.  The relaxation 
solutions may collapse to a point, or experience foldovers, de-
pending on the starting state.  He demonstrates several heuristics 
that help the solution converge to valid maps. 
Grimm [2002] partitions the surface into 6 charts, and maps these 
to faces of a cube, and from there to a sphere.  Schemes based on 
a priori chart partitions constrain the spherical parametrization. 
Haker et al. [2000] find conformal approximations of meshes over 
the sphere.  Conceptually, they remove a single point from the 
surface, harmonically map the remaining surface onto an infinite 
plane, and finally map that infinite plane onto the sphere using 
stereographic projection.  Both maps are conformal for smooth 
surfaces.  Unfortunately, many maps that are bijective and con-
formal for smooth surfaces do not guarantee an embedding when 
applied to piecewise-linear surfaces (meshes), and sometimes 
produce triangle flips, as in Eck et al. [1995].  For instance, 
stereographic projection can flip thin obtuse triangles.  Another 
concern with conformal-like maps is scale distortion (Figure 11). 
Sheffer et al. [2003] find the angles of a spherical embedding as a 
constrained nonlinear system, and show results for simple meshes. 
Gotsman et al. [2003] show a nice relationship between spectral 
graph theory and spherical parametrization, and embed simple 
meshes on the sphere by solving a quadratic system. 
Quicken et al. [2000] parametrize the surface of a voxel volume 
onto a sphere.  Their nonlinear objective functional exploits the 
uniform quadrilateral structure of the voxel surface; it seeks to 
equalize areas and preserve right-angles of surface elements. 
Their scheme is not applicable to general triangle meshes. 
These prior schemes cannot parametrize a complex mesh robustly 
and with the low scale-distortion necessary for good remeshing.



 

 Gnomonic 2-slerp sym. Arvo ∘ Turk−1 Buss-Fillmore Area Subdivision Stretch 𝐷→𝑆 (Stretch 𝑆→𝐷) 
 

        
𝐷 → 𝑆 𝐿2 = 0.31 𝐿2 = 0.67 𝐿2 = 0.75 𝐿2 = 0.70 𝐿2 = 0.40 𝐿2 = 0.71 𝐿2 = 0.85 (𝐿2 = 0.80) 
𝑆 → 𝐷 𝐿2 = 0.23 𝐿2 = 0.55 𝐿2 = 0.73 𝐿2 = 0.45 𝐿2 = 0.42 𝐿2 = 0.32 𝐿2 < 0.01 (𝐿2 = 0.75) 
Figure 3: Comparison of spherical triangle maps for a large spherical triangle, and computed stretch efficiencies in both map directions.  
(The black curves show a uniform tessellation of the planar triangle in domain 𝐷 mapped onto the sphere 𝑆.) 

3.2 Spherical triangle map 
To form a continuous parametrization 𝜙, we must define the map 
within each triangle interior.  Let the points {𝐴,𝐵,𝐶} on the 
sphere be the parametrization of the vertices of a mesh triangle 
{𝐴′ = 𝜙(𝐴),𝐵′ = 𝜙(𝐵),𝐶′ = 𝜙(𝐶)}.  Given a point 𝑃′ = 𝛼𝐴′ +
𝛽𝐵′ + 𝛾𝐶′ with barycentric coordinates 𝛼 + 𝛽 + 𝛾 = 1 within the 
triangle, we must define its parametrization 𝑃 = 𝜙−1(𝑃′).  Any 
such mapping must have distortion since the spherical triangle is 
not developable.  We have explored several mappings (Figure 3): 
Gnomonic: It is simply spherical projection about the sphere 
center 𝑂. That is, 𝑃=(𝛼𝐴+𝛽𝐵+𝛾𝐶)/‖𝛼𝐴+𝛽𝐵+𝛾𝐶‖. The inverse 
is easily computable as spherical projection back onto the triangle. 
2-slerp-symmetrized:  Spherical linear interpolation defines 
𝑃=slerp(𝐴,𝐵,𝛼) such that arclen(𝐴,𝑃)/arclen(𝑃,𝐵)=𝛼/�1–𝛼�.  
A possible triangle interpolation scheme is to use two slerps: 
2-slerp�𝐴,𝐵,𝐶,𝛼,𝛽, 1-𝛼-𝛽�   =   slerp�slerp�𝐴,𝐵,𝛽/(𝛼+𝛽)�,𝐶, 1-𝛼-𝛽�.  
This definition is not symmetric since 2-slerp(𝐴,𝐵,𝐶,𝛼,𝛽, 𝛾) 
≠ 2-slerp(𝐴,𝐵,𝐶,𝛽, 𝛾,𝛼).  However, symmetry can be obtained 
by averaging three 2-slerp’s and renormalizing: 
2-slerp-sym(𝐴,𝐵,𝐶,𝛼,𝛽, 𝛾)=normalize�𝛼 2-slerp(𝐴,𝐵,𝐶,𝛼,𝛽, 𝛾) 

         + 𝛽 2-slerp(𝐵,𝐶,𝐴,𝛽, 𝛾,𝛼) + 𝛾 2-slerp(𝐶,𝐴,𝐵, 𝛾,𝛼,𝛽)�. 
Arvo ∘ Turk−𝟏-symmetrized:  Arvo [1995] presents an area-
uniform map from a square to a spherical triangle.  Turk [1990] 
presents an area-uniform map from a square to a triangle.  The 
composition of the two maps, Arvo ∘ Turk−1, is an area-uniform 
map from a triangle to a spherical triangle.  Unfortunately, the 
map is not symmetric, so like 2-slerp it requires symmetrization.  
This map is fairly expensive to compute since it involves several 
trigonometric evaluations. 
Buss-Fillmore [2001]:  They define barycentric combinations of 
spherical points 𝐴1, … ,𝐴𝑘 as least-squares minimizations of 
weighted geodesic distances.  Even for 𝑘=3, the minimization 
problem requires an iterative solution, but it converges quickly.  
The scheme has the property that if one takes the exponential map 
around the resulting point 𝑃 (mapping each 𝐴𝑖 to a point 𝐵𝑖 in the 
plane tangent to the sphere at 𝑃 such that ‖𝑃𝐵𝑖‖ = arclen(𝑃𝐴𝑖) 
and 𝑃,𝐴𝑖 ,𝐵𝑖 ,𝑂 are coplanar), then 𝑃 is the convex combination of 
the points 𝐵𝑖 with the provided initial weights.  Consequently, the 
spherical triangle map is easy to invert. 
Spherical area map:  In this map, we define 𝑃 such that the 
barycentric coordinates (𝛼,𝛽, 𝛾) match the ratios of spherical 
areas of the 3 spherical sub-triangles (𝑃,𝐵,𝐶), (𝐴,𝑃,𝐶), and 
(𝐴,𝐵,𝑃).  We have not located a reference to this map in the 
literature.  To obtain 𝑃, we first find the points 𝐷,𝐸,𝐹 such that 
area(𝐷,𝐵,𝐶) = 𝛼 area(𝐴,𝐵,𝐶), area(𝐴,𝐸,𝐶) = 𝛽 area(𝐴,𝐵,𝐶), 
and area(𝐴,𝐵,𝐹) = 𝛾 area(𝐴,𝐵,𝐶).  Todhunter and Leathem 
[1949] prove that the locus of points that together with an arc 𝑋𝑋 

form spherical triangles of a given (constant) area is a small circle 
passing through 𝑋∗ and 𝑋∗, the antipodes of 𝑋 and 𝑋.  Therefore, 
𝑃 is found at the intersection of the small circles supporting 
(𝐷,𝐵∗,𝐶∗), (𝐴∗,𝐸,𝐶∗), and (𝐴∗,𝐵∗,𝐹).  The inverse map is easy 
to compute, since it simply involves computing the ratios of the 
areas of the spherical sub-triangles. 
Recursive subdivision:  Both the triangle and spherical triangle 
are recursively split using regular 1-to-4 subdivision [Schröder 
and Sweldens 1995], while tracking the location of the desired 
barycentric coordinates.  Since the map is not smooth, neither the 
forward nor the inverse map has a closed-form expression. 
Stretch optimization:  For comparison, we also consider the 
result of finely subdividing the triangle and optimizing stretch in 
either map direction (as described in Sections 3.4-3.5). 
All these maps converge to affine maps as the spherical triangle 
becomes small, i.e. planar.  We next analyze these maps with 
respect to a number of desirable properties (Table 1): continuity at 
boundaries (across arbitrary adjacent triangles), arc-length para-
metrization of boundary edges, smoothness (the map should be 
differentiable), closed-form (analytic) expressions for both the 
spherical map and its inverse, and distortion minimization (as 
measured using the stretch metric). 
In conclusion, no map exhibits all the desired properties.  Some 
maps have better stretch behavior, which is important for para-
metrizing coarse meshes.  However, these maps are more 
expensive to compute, and behave much like the inexpensive 
gnomonic map for the small triangles in fine meshes.  For perfor-
mance, we have chosen to use the gnomonic map for the coarse-
to-fine optimization of 𝑆 → 𝑀 (Section 3.5).  We had hoped that 
the good stretch behavior of the Arvo ∘ Turk−1-symmetrized map 
would help accelerate the coarse-to-fine optimization process, but 
our experiments indicate that the overall compute-time conver-
gence rate instead slows.  In Section 4.2, we also experiment with 
all these spherical triangle maps to parametrize the large domain 
faces in 𝐷 → 𝑆. 

Triangle map Boundaries Smooth 
interior 

Analytic Stretch 
𝐶0 arc-len. 𝐷→𝑆 𝑆→𝐷 𝐷→𝑆 𝑆→𝐷 

Gnomonic yes no yes yes yes poor poor 
2-slerp-sym. yes yes yes yes no ok ok 
Arvo ∘ Turk−1 yes no yes yes no good good 
Buss-Fillmore yes yes yes no yes good poor 
Area no no yes yes yes poor poor 
Subdivision yes yes no no no good poor 
Stretch optim. no no visually no no best best 

Table 1: Desirable properties of a spherical triangle map. 



 

3.3 Review of planar-domain stretch metric 
Sander et al. [2001] show that undersampling is directly related to 
the stretch of a parametrization.  They consider the case of a 
parametrization 𝜙 ∶ 𝐷 → 𝑀 ∶ (𝑠, 𝑡) ∈ ℝ2 → (𝑥,𝑦, 𝑧) ∈ ℝ3, where 
𝐷 is a planar domain.  At any point (𝑠, 𝑡), the singular values Γ 
and 𝛾 of the 3×2 Jacobian matrix 𝐽𝜙 = (𝜕𝜙/𝜕𝑠  𝜕𝜙/𝜕𝑡) repre-
sent the largest and smallest lengths obtained when mapping unit-
length vectors from the domain 𝐷 to the surface 𝑆, i.e. the largest 
and smallest local stretch.  They derive two scalar norms corre-
sponding to rms (𝐿2) and worst-case (𝐿∞) stretch over all 
directions in the domain: 

𝐿2(𝑠, 𝑡) = �1
2
(Γ2 + 𝛾2)    and    𝐿∞(𝑠, 𝑡) = Γ . 

The 𝐿2-stretch norm is 𝐿2-integrated over the surface 𝑀 to obtain 
the stretch metric 

𝐿2(𝑀) = �
1
𝐴𝑀

� �𝐿2(𝑠, 𝑡)�2 𝑑𝐴𝑀(𝑠, 𝑡)
(𝑠,𝑡)∈𝐷

 , 

where 𝑑𝐴𝑀(𝑠, 𝑡) = 𝛾 Γ 𝑑𝑠 𝑑𝑡 is the differential surface area. 
For the case of a triangle mesh, 𝜙 is piecewise linear and its 
Jacobian 𝐽𝜙 is constant over each triangle.  Thus, the integrated 
metric can be rewritten as a finite sum. 
The 𝐿2 stretch efficiency is defined as (𝐴𝑀/𝐴𝐷)(1/𝐿2(𝑀)2) 
where 𝐴𝑀 and 𝐴𝐷 are the areas of the surface and domain respec-
tively.  The stretch efficiency has an upper bound of 1. 

3.4 Spherical-domain stretch metric 
We extend the definition of stretch to consider a spherical para-
metrization 𝜙 ∶ 𝑆 → 𝑀 ∶ 𝑣� ∈ 𝑆 → (𝑥,𝑦, 𝑧) ∈ ℝ3. 
We now analyze the map piecewise on each spherical triangle.  
Let (𝑠, 𝑡) be a local orthonormal coordinate frame on a triangle 𝑇 
of 𝑀.  Because the spherical triangle is nonplanar, we find it more 
convenient to analyze the inverse map 𝜙−1(𝑠, 𝑡) from triangle 𝑇 
back to the sphere.  Let 𝐽𝜙−1 be the Jacobian of this inverse map.  
Around any point 𝜙(𝑃) inside 𝑇, 𝐽𝜙−1 provides a local linear 
approximation for 𝜙−1. Consequently, distances around 𝑃 get 
stretched through map 𝜙 by a factor between 1/𝛾 and 1/Γ (with Γ 
and 𝛾 the singular values of

 
𝐽𝜙−1). Thus, the stretch over the 

triangle 𝑇 is 

𝐿2(𝑇) = �
1
𝐴𝑀𝑇

� �
1
𝛾2 +

1
Γ2�  𝑑𝐴𝑀𝑇

(𝑠, 𝑡)
(𝑠,𝑡)∈𝑇

 , 

where 𝑑𝐴𝑀𝑇
(𝑠, 𝑡) = 𝑑𝑠 𝑑𝑡 is the differential mesh triangle area. 

When Γ ≫ 𝛾, minimizing stretch alone produces oversampling 
along one direction.  Since the parametrization is not well con-
strained along that direction, the iso-parameter lines become 
“bunched-up” and wavy (see Figure 11).  To avoid this artifact, 
we add a small regularization term, 𝜀(𝐴𝑀/4𝜋)𝑝/2+1Γ𝑝, that 
penalizes inverse stretch.  We have found that 𝜀=0.0001 and 𝑝=6 
work well for all our models.  Unlike a conformal energy term, 
inverse stretch only contributes in regions of oversampling. 
Since 𝐽𝜙−1 and therefore Γ and 𝛾 are not constant over 𝑇, we have 
to resort to numerical integration.  We subdivide each spherical 
triangle such that the resulting pieces are sufficiently planar (i.e. 
the length of the longest edge is bounded by a threshold).  For 
each resulting spherical sub-triangle, we can directly point-sample 
the Jacobian 𝐽𝜙−1 by evaluating the derivatives of the spherical 
triangle map.  Derivative computations are fairly expensive 
though.  Instead, we have found it more efficient to numerically 
compute 𝐽𝜙−1 by evaluating stretch using the planar triangle 
spanning its vertices. 

However, this planar approximation to computing stretch can 
grossly underestimate stretch for spherical triangles with bad 
aspect ratio, regardless of their size.  Specifically, as a thin “cap” 
spherical triangle (with one angle close to 180°) approaches 
degeneracy, its analytic stretch becomes infinite.  In contrast, the 
stretch measured using the planar approximation approaches a 
finite constant, since the planar triangle just rotates its plane closer 
to the sphere origin while maintaining a bounded aspect ratio.  In 
practice, the problem reveals itself during stretch optimization as 
an “accordion effect”. 
Our solution is to split each spherical triangle using the perpen-
dicular to the longest edge, prior to subdividing it for numerical 
integration.  This split has the effect of replacing all “cap” trian-
gles with two “needle” triangles (with two angles close to 90°).  A 
needle triangle does not suffer from the same inaccuracy since its 
shortest planar edge shrinks along with its spherical counterpart. 

3.5 Spherical parametrization algorithm 
Coarse-to-fine strategy.  Minimizing the stretch norm is a 
nonlinear optimization, and we approach this problem using a 
coarse-to-fine multiresolution strategy as in Hormann et al. [1999] 
and Sander et al. [2002].  We simplify the surface mesh 𝑀 to a 
tetrahedron while creating a progressive mesh [Hoppe 1996], 
favoring triangles with good aspect ratios.  After mapping the 
base tetrahedron to the sphere, we traverse the progressive mesh 
sequence, inserting vertices on the sphere while maintaining an 
embedding and minimizing the stretch metric.  Figure 4 shows 
some example results. 

Vertex insertion.  Each vertex split in the progressive mesh 
specifies a ring of vertices that will be the neighbors of the new 
vertex.  This vertex ring forms a spherical polygon.  The kernel of 
this spherical polygon is defined as the intersection of the open 
hemispheres defined by the polygon edges.  To maintain an 
embedding (i.e. avoid flipped or degenerate triangles), we place 
the new vertex inside this kernel.  Note that if the mapping is an 
embedding prior to the insertion, the kernel cannot be empty. 

Vertex optimization.  After inserting a new vertex, we optimize 
vertices in the neighborhood one at a time.  To optimize one 
vertex, we minimize the stretch metric summed on its adjacent 
triangles.  We perform a set of great-circle searches in random 
directions on the sphere, using bracketed parabolic minimization.  
To prevent flipping, we only consider perturbing the vertex within 
the kernel of its 1-ring.  Note that degenerate triangles are avoided 
since they have infinite stretch energy. 
Each time the number of vertices has increased by a constant 
factor (e.g. 2), we sweep through all mesh vertices and optimize 
each one in turn.  More precisely, we place all vertices in a priori-
ty queue ordered by the amount of change in their neighborhood.  
The process stops when the largest change is below a threshold 
(e.g. 10−3). 

Robustness.  We can show by induction that our parametrization 
algorithm always produces an embedding.  We start with an 
embedding (since the base case is simply a tetrahedron), and we 
note that both types of operations (vertex insertion and vertex 
optimization) maintain the embedding.  The algorithm can only 
fail due to numerical precision problems, and we have not experi-
enced any such problems.  Shapiro and Tal [1998] use a similar 
coarse-to-fine refinement strategy to robustly map a mesh onto a 
convex polyhedron, which could then be projected to a sphere. 

Convergence.  As in most nonlinear problems, our minimization 
algorithm is not guaranteed to find a global minimum.  The vertex 
optimizations only decrease the stretch energy functional, and 
since it is positive, it must converge to a local minimum. 



 

  

   
Figure 4: Spherical parametrizations: Venus, cow, bunny, David, 
and close-up of the cow (showing snout, eyes, ears, and horns). 

4. Spherical remeshing 
Having parametrized a surface onto the sphere, we now evaluate 
its signal onto one of three polyhedral domains.  First, we show 
that the samples from a uniform 𝑛-tessellation of the three do-
mains can be mapped to geometry images.  Second, we present 
low-stretch parametrizations from the domains to the sphere. 

4.1 Domain unfolding (𝑫 → 𝑰) 
Our goal in remeshing is to represent the surface signal using a 
compact 2D sample grid, since such a geometry image supports 
efficient storage, access, and processing. 
Our first efforts focused on the cube domain, since its 6 faces can 
each be represented by a square geometry image.  We were 
initially discouraged by the tetrahedron and octahedron domains, 
since their isometric unfoldings do not yield rectangles in the 
plane.  (For example, such unfoldings are used for polyhedral 
maps in cartography [Furuti 1997].)  However, we discovered that 
the samples of the regularly subdivided domain faces can be 
mapped 1-to-1 with samples of a 2D grid.  As shown in Figure 5, 
the tetrahedron can be unfolded into a rectangle, and the octahe-
dron into a square.  Note that the unfolded tetrahedron wraps left-
to-right, so its rightmost column in the geometry image is redun-
dant.  The 1-to-1 correspondence between domain samples and 
images samples is illustrated in Figure 6. 
The remaining two Platonic solids would have more domain 
faces.  The 20 triangles of the icosahedron could be unfolded to 
form 10 square geometry images or 5 rectangular ones.  The 
dodecahedron seems impractical since its 12 pentagonal faces do 
not admit a regular sampling. 
Since the samples in an image 𝐼 really represent points on the 
domain 𝐷, filtering and reconstruction operations over the image 
must consider the domain geometry.  Thus, for domains with 
triangle faces (tetrahedron and octahedron), this would imply 
linear as opposed to bilinear reconstruction. 
Interestingly, in current graphics hardware, geometry is interpo-
lated linearly (using the triangle primitive) whereas textures are 
interpolated bi-linearly (from 2D grids).  Geometry images 
encourage us to consider unifying the reconstruction kernels.  
Thus, for tetrahedron and octahedron domains, both geometry and 
signals can be linearly interpolated (i.e. triangles with Gouraud-
interpolated signal).  And for the cube domain, both could be bi-
linearly interpolated.  From a signal-processing point-of-view, 
hexagonal grids (i.e. formed by equilateral triangles) actually offer 
better reconstruction characteristics than orthogonal grids for 
isotropic signals [Staunton 1999]. 
 
 

  
Figure 5: Cutting and unfolding the tetrahedron and octahedron.  
The colored edges represent the domain cuts. 
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 𝐿2(𝐷→𝑆) = 0.910 𝐿2(𝐷→𝑆) = 0.969 𝐿2(𝐷→𝑆) = 0.983 

Figure 6: The three domains unfolded into geometry images, and 
mapped onto the sphere.  (Samples lie at gridline intersections.) 

 
    

image 𝐼 domain 𝐷 sphere 𝑆 domain 𝐷 sphere 𝑆 
 𝐿2(𝐼→𝑆) = 0.839 𝐿2(𝐼→𝑆) = 0.896 
 (a) regular octahedron (b) flattened octahedron 

Figure 7: For a quadrilateral sampling, a flattened octahedron 
domain unfolds isometrically onto the square, yielding a 
smoother and more stretch-efficient parametrization. 

Quadrilateral geometry image.  If one desires a single geometry 
image with quadrilateral (bilinear) structure, the triangle-based 
octahedral parametrization produces a poor sampling because the 
non-isometric unfolding leads to derivative discontinuities on the 
domain edges (Figure 7a).  As a better alternative, we construct a 
map from a flattened octahedron to the sphere.  The flattened 
octahedron does unfold isometrically into a square, and still 
maintains the proper spherical topology.  We tessellate the flat-
tened octahedron and apply stretch-minimization as explained in 
the next section.  We thus obtain a map that is smooth everywhere 
except at the 4 image boundary midpoints, and has improved 
stretch efficiency (see Figure 7b). 



 

Boundary extension rules.  Often, applications that process 
regular grids need to “hallucinate” samples that lie outside the 
grid boundaries.  Traditional choices are to replicate the boundary 
values (i.e. clamping coordinates to the interior), to repeat the grid 
periodically, or to reflect the grid across its boundaries.  These 
approaches correspond to the implied topologies of a disk (clamp-
ing both axes), a cylinder (periodicity along one axis), or a torus 
(periodicity along both axes). 
The boundary symmetries of our geometry 
images permit simple extension rules that 
allow continuous traversal over a spherical 
topology.  The key is to extend the grid by 
rotating it 180° around the midpoints of 
boundaries.  The inset figure shows this 
process applied to the octahedron, with the 
edges colored as in Figure 5.  For the 
tetrahedron grid, we apply regular periodicity along the horizontal 
direction, and 180° rotations in the vertical direction. 
These grid extension rules create an infinite lattice in 2D.  Note 
that if one applies a separable, symmetric filter kernel to this 
lattice, the lattice symmetries are preserved.  We make use of this 
property for image wavelet compression (Section 6). 

4.2 Domain spherical parametrization (𝑫 → 𝑺) 
The simplest parametrization from the domain to the sphere is a 
spherical projection, i.e. using a set of gnomonic maps.  This is 
the traditional parametrization for environment cube-maps.  
However, as we saw in Figure 3, gnomonic projection creates 
high stretch distortion for large faces such as the domain faces. 
Our solution is to apply our spherical parametrization optimiza-
tion of Section 3 to an 𝑛-tessellated domain.  Because here we 
seek to minimize stretch to the sphere instead of from the sphere, 
the stretch metric is measured in the direction 𝐷 → 𝑆 and is 
integrated over the sphere.  (Stretch of this inverse map is easy to 
compute, since the Jacobian singular values are reciprocals of 
those in the forward map.) 
The resulting stretch-optimized maps have excellent stretch 
efficiency, as shown in the bottom row of Figure 6.  Moreover, the 
derivatives are visually continuous everywhere except at the 
domain vertices (which are not developable).  For each domain, 
we pre-compute the map once at a high tessellation density and 
save it to disk.  Then, we can sample this map for any requested 
density 𝑛.  Figure 8 compares sampling the same model using all 
four domain types. 
As an alternative, we also explored procedural maps using the 
spherical triangle maps presented in Section 3.2.  For the cube, we 
split each cube face into 2, 4, or 8 triangles prior to the triangle 
mapping.  As shown in Table 2, these procedural maps are less 
efficient than our optimized maps.  Also, they generally lack 
derivative continuity across edges of the domain polyhedron. 

 Stretch- 
optimiz. 

Procedural Maps 
 Gno-

monic 
2-slerp Arvo ∘  

Turk−1 
Buss-

Fillmore 
Area Subdiv. 

tetra 0.910 0.628 0.871 0.846 0.889 0.849 0.645 
octa 0.969 0.893 0.954 0.943 0.958 0.958 0.902 
cube2 

0.983 
0.859 0.945 0.967 0.953 0.932 0.924 

cube4 0.956 0.965 0.966 0.966 0.978 0.959 
cube8 0.961 0.966 0.966 0.966 0.965 0.964 
flat-octa 0.896 - - - - - - 
Table 2: 𝐿2 stretch efficiencies for 𝐷 → 𝑆 using optimization and 
procedural maps.  (Cube faces are split into 2, 4, or 8 triangles.) 

tetrahedron octahedron cube flat octahedron 

    

 
 

 
 

Figure 8: Remeshing using the four domain mappings. 

5. Results and discussion 
Our implementation consists of two modules.  The first computes 
the surface spherical parametrization (𝑀 → 𝑆).  This is the slowest 
step in our pipeline, requiring about 7-25 minutes for our test 
models (25K-200K faces) on a 3GHz Pentium4 PC.  The second 
module subdivides the domain 𝐷 and maps these samples into 
both the geometry image (𝐷 → 𝐼) and the sphere (𝐷 → 𝑆).  To 
efficiently map a point from the sphere back onto the surface, we 
locate the containing spherical triangle using a spatial data struc-
ture.  By decomposing the parametrization into separate maps 
(𝐷 → 𝑆 and 𝑀 → 𝑆), we avoid having to split the faces of the 
original mesh 𝑀 along the edges of the polyhedral domain 𝐷. 
Figure 9 shows a comparison of our remeshing scheme with that 
of Gu et al. [2002].  The Gu et al. parametrizations have more 
distortion at the cut path ends.  Table 3 provides quantitative 
comparison of spherical parametrization and remeshing using our 
3 domains and the square domain of Gu et al.  Accuracy is meas-
ured as Peak Signal to Noise Ratio PSNR = 20 log10(𝑝𝑝𝑝𝑘/𝑑), 
where 𝑝𝑝𝑝𝑘 is the bounding box diagonal and 𝑑 is the symmetric 
rms Hausdorff error (geometric distance) between the original 
mesh and the remesh.  The tessellation number 𝑛 is adjusted 
across domain types to approximately equalize sample sizes.  The 
PSNR numbers indicate that our spherically parametrized geome-
try images have greater accuracy for sphere-like objects, as was to 
be expected.  While the flexibility of the arbitrary cuts in Gu et al. 
is advantageous for some objects with long extremities (Figure 
10), our results are close.  The somewhat lower PSNR numbers 
for the cube-domain parametrizations are likely due to the heuris-
tic selection of diagonals for triangulation. 
Figure 10 shows an inherent limitation of spherical parametriza-
tion; for highly deformed shapes, one cannot simultaneously have 
both low stretch and conformality.  Figure 11 shows the advantage 
of the stretch metric over the more traditional conformal metric, 
and also demonstrates the improvement due to our inverse-stretch 
regularization. 
Figure 14 shows more examples using the 4 domain types.  Note 
that all domains work well on any given model – we made no 
effort to select the domain per model.  We prefer the octahedron 
domain for triangle-based (linear) reconstruction, and the flat-
tened octahedron for quad-based (bilinear) reconstruction, 
because they each result in a single square geometry image.  We 
explored the other two domains for research completeness. 
The David in Figure 14 demonstrates a simple extension to our 
scheme that allows parametrization of surfaces with boundaries.  
Given an initial mesh with boundaries (holes), we triangulate each 
hole, marking the newly added faces with the attribute “hole”.  
We apply our spherical parametrization algorithm to this closed 

 



 

mesh, but we reduce the energy computed on all hole faces by a 
constant factor (e.g. 10−6).  The effect is that each hole is allowed 
to shrink in the parameter domain.  However, it cannot collapse 
completely because the non-hole faces adjacent to the boundary 
do measure tangential stretch along the surface boundary.  The 
precise 3D geometry of the hole faces is unimportant, since their 
sole purpose is effectively to prevent boundary self-intersection 
during optimization.  During remeshing we ignore samples that lie 
in hole faces (colored in yellow). 
 
 

 𝐿2 stretch efficiency 𝐷→𝑀 Remesh PSNR (dB) 
tetra octa cube [Gu] tetra 

𝑛=181 
octa 
𝑛=128 

cube 
𝑛=104 

[Gu] 
𝑛=256 

Venus 0.864 0.943 0.937 0.706 82.3 83.4 81.8 80.7 

bunny 0.673 0.706 0.703 0.639 79.6 79.8 79.0 78.2 

David 0.767 0.828 0.822 0.644 67.8 68.0 68.2 68.2 

gargoyle 0.568 0.643 0.656 0.669 78.1 79.2 78.2 77.0 

armadillo 0.407 0.454 0.465 0.607 71.2 72.0 72.0 72.5 

horse 0.349 0.363 0.389 0.351 76.6 76.9 76.6 74.3 

cow 0.377 0.405 0.427 0.582 74.5 75.2 75.5 78.0 

dinosaur 0.326 0.360 0.345 0.496 73.1 73.6 73.2 74.8 

Table 3: Parametrization efficiencies and remesh accuracies. 

 

 

 

     

 

 
Gu et al. geometry image  octahedron geometry image 

Figure 9: Comparison of geometry images from Gu et al. [2002] 
and from our octahedron domain parametrization.  The cut nodes 
in Gu et al. exhibit much more distortion. 

 

  
Figure 10: This cow model has a number of narrow extremities 
that make spherical parametrization challenging.  Even at the tip 
of the tail, our method is robust and avoids undersampling.  Of 
course, parametrization anisotropy along the tail becomes una-
voidable, as evidenced by the thin remesh quadrilaterals. 

Geometry image Parametrization & close-up Remesh 

 
   

(a) conformal metric PSNR=31.2 

 
   

(b) 𝐿2 stretch metric PSNR=59.6 

 
   

(c) 𝐿2 stretch metric  +  𝐿6 inverse stretch metric PSNR=58.1 
Figure 11: Parametrization comparison. (a) While the conformal 
metric better preserves angles, it leads to scale distortion and thus 
undersampling.  (b) The stretch metric more uniformly distrib-
utes samples, but has irregular oversampling.  (c) Our solution is 
to add a fraction of inverse stretch as a regularizing term. 

6. Applications 
Rendering.  Our geometry images can be rendered as triangles by 
simply connecting the samples.  For the tetrahedron and octahe-
dron domains, the triangle connectivity is already provided.  For 
the cube domain, we split each domain quad along the shorter 
diagonal, as in Gu et al. [2002]. 
Level-of-detail.  If one selects the tessellation number n to be a 
power of 2, simpler models can be obtained easily by subsampling 
the geometry image.  Gu et al. demonstrated this geometric 
subsampling, but the parametrization of their cut constrained the 
coarsest possible mesh, usually to 𝑛=32.  In contrast, we can 
subsample all the way to 𝑛=1, obtaining coarse models with the 
connectivities of the domain polyhedra.  Here are two examples: 

 
      

       
  𝑛=1    𝑛=2    𝑛=4    𝑛=8    𝑛=16    𝑛=32    𝑛=64  



 

Morphing.  Creating a morph between two models becomes 
easier once their spherical parametrizations are obtained.  Any 
quaternion specifies a rigid alignment of the two sphere domains.  
Then, one can intersect the two spherical triangulations to form a 
mutual tessellation that can interpolate the models [Alexa 2000]. 
Our framework offers an alternative approach, which is to use 
spherical remeshing to create a morphable geometry image.  We 
simply store two positions at each pixel of the geometry image, 
and interpolate between these points, as shown below. 

      
Note that the Gu et al. geometry images do not support such 
morphs, since their cut structures generally differ.  Our geometry 
images can also morph between several models, or a whole space 
of models.  In contrast, an approach based on mutual tessellation 
becomes impractical due to excessive mesh refinement. 
To provide more control over the morph, it is common to let the 
user specify a set of 𝑘 corresponding feature points on the models.  
The problem then becomes that of parametrization subject to 
constraints.  Praun et al. [2001] present a technique involving a 
semi-regular domain.  Alexa [2000] presents a warping scheme 
over the sphere, but the scheme does not always satisfy all con-
straints.  Eckstein et al. [2001] present a robust planar solution, 
and perhaps their approach could be adapted to the sphere. 
Compression.  We have implemented two compression methods, 
one based on spherical wavelets [Schröder and Sweldens 1995], 
and the other on 2D image wavelets [Davis 1996].  Both methods 
work directly on the geometry images, with no explicit mesh data 
structures.  Both make use of the boundary extension rules de-
scribed in Section 4.1, and express high-pass detail in local 
tangential frames estimated from the low-pass surface.  We follow 
each wavelet transform with quantization and entropy coding 
[Davis 1996], giving higher importance (3x) to the detail compo-
nents normal to the surface [Khodakovsky et al. 2000].  We ran 
the Davis coder at various target bit rates to obtain the “spherical 
wavelet” and “image wavelet” data points in the rate-distortion 
graph of Figure 12. 
For spherical wavelets, we use the geometry image from the 
octahedron domain and the lifted butterfly wavelet basis on the 
octahedron.  As shown in Figure 12, our results are better than the 
compressed geometry images of Gu et al. [2002].  For small file 
sizes (≤3.5KB), our method also outperforms the coder of 
Khodakovsky et al. [Khodakovsky et al. 2000] on the bunny 
model, because our domain is simple and implicit. 
For image wavelet coding, we use the geometry image defined 
with the flattened octahedron domain.  One difficulty with using a 
standard image coder is that it is unaware of the boundary conti-
nuity conditions, and thus creates a lossy reconstructed surface 
with a gap along the domain cut.  For this reason, the compression 
scheme of Gu et al. [2002] has to subsequently fuse the boundary 
using boundary topology stored in a sideband.  This fusion results 
in sharp step functions that must then be diffused into the surface. 
We are able to avoid this continuity issue altogether by modifying 
the image coder to use the boundary extension rules of Section 
4.1, effectively working on an image with spherical topology.  
This modification only involves about 100 lines of code.  We use 
symmetric image wavelet filters to preserve boundary symmetries 
at all image levels.  During reconstruction we ensure proper 
duplication of the boundary values at all levels of the image 
pyramid, and as a result obtain a watertight mesh. 

The extension rules effectively provide a smooth surface para-
metrization (i.e. continuous derivatives) except at four singular 
points, and this smoothness leads to significant compression 
improvements.  As seen in Figure 12, for the bunny model the 
resulting PSNR curve consistently outperforms the specialized 
mesh coder of Khodakovsky et al. [2000].  Figure 13 shows the 
reconstructed remesh at various bit rates. 
The elegance of our approach is that it uses ordinary image 
wavelets (no special-case bases) applied to a regular 2D grid data 
structure (no pointers). 

Smooth subdivision.  Losasso et al. [2003] adapt our spherical 
remeshing approach to construct smooth surfaces over geometry 
images.  By exploiting the extension 
rules of our flattened octahedron 
parametrization, they represent a 
closed surface using a single bicubic 
B-spline patch.  The surface is 𝐶2 
everywhere except at the four cut 
points where it is 𝐶1.  Representing 
the surface as a geometry image 
allows it to be subdivided in the 
fragment shader pipeline of current-
ly available graphics hardware. 

 
Figure 12: Rate distortion for different compression schemes 
applied to the bunny model.  Both spherical and image wavelets 
are computed on a geometry image of size 513×513 (𝑛=256). 
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Figure 13: Geometry compression using image wavelets.  (The 
four invisible domain cuts meet at the top of the rear right knee.) 
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7. Summary and future work 
We have presented a robust algorithm for parametrizing genus-
zero models onto the sphere, and introduced several approaches 
for resampling the spherical signal onto regular domains with 
simple boundary symmetries.  We demonstrated our spherical 
parametrization framework on a collection of challenging models.  
The geometry images generated using our polyhedral samplings 
have simple structures that benefit a number of applications, 
including rendering, level-of-detail control, morphing, compres-
sion, and hardware evaluation of smooth surfaces. 
There are a number of areas for future work: 
• A more thorough investigation and comparison of compression 

approaches for spherically parametrized models. 
• Treatment of the parametric singularities at the domain vertices, 

to allow more general signal-processing to be applied to the 
surfaces, such as general convolution. 

• Use of fine-to-coarse integrated metric tensors to accelerate 
spherical parametrization and to enable signal-specialized par-
ametrization as in Sander et al. [2002]. 

• Direct minimization of stretch across 𝐷 → 𝑀, to account for 
slight non-uniformity of 𝐷 → 𝑆 map, perhaps by modulating the 
stretch metric tensor during 𝑆 → 𝑀 optimization. 

• Consistent spherical parametrizations among several models 
(i.e. with feature correspondences). 
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tetrahedron parametrization geometry image (362×182) flat-shaded remesh (65,524 unique vertices) 

   
octahedron parametrization geometry image (257×257) flat-shaded remesh (65,538 unique vertices) 

   
cube parametrization geometry image (6×105×105) flat-shaded remesh (64,523 non-hole vertices) 

   
flat octahedron parametrization geometry image (257×257) flat-shaded remesh (65,538 unique vertices) 

Figure 14: Results of spherical parametrization and remeshing using all four domain types.  For visualization, the geometry images in the 
middle column are shown shaded using two antipodal lights.  (Shading is based solely on the remesh – there are no stored normals.)
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