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Abstract
We propose a metric for surface parameterization specialized to its signal that can be used to create more efficient,
high-quality texture maps. Derived from Taylor expansion of signal error, our metric predicts the signal approxi-
mation error - the difference between the original surface signal and its reconstruction from the sampled texture.
Unlike previous methods, our metric assumes piecewise-linear reconstruction, and thus makes a good approxima-
tion to bilinear reconstruction employed in graphics hardware. We achieve significant savings in texture area for
a desired signal accuracy compared to the signal-specialized parameterization metric proposed by Sander et al.
in the 2002 Eurographics Workshop on Rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadowing
and texture

1. Introduction

Texture mapping features in graphics hardware are being in-
creasingly used in real-time rendering. Surface signals play
an important role in achieving a number of rendering effects.
While these rendering effects can also be stored per vertex
on a high resolution mesh, using a coarser mesh with tex-
tures is generally more efficient [COM98].

Texture mapping requires a surface to be parameterized
onto a texture domain by assigning texture coordinates to its
vertices. Given this parameterization, the surface signal is
sampled into a texture image of a given resolution. Texture
memory can become a scarce resource in complex scenes
with many textured objects. In this paper we examine how to
construct a parameterization to best represent a given surface
signal using textures as compact as possible. We construct
such a parameterization as an off-line, automatic preprocess.

The majority of surface parameterization schemes assume
no a priori knowledge of the signal and instead minimize for
various geometric distortion measures such as preservation
of area and angles. Sander et al. build a surface parameteri-
zation optimized for a specific signal by trying to reduce the
signal approximation error - the difference between the re-

constructed signal and the original signal [SGSH02]. While
their approach already produces more efficient texture maps
than signal-independent parameterizations, it is based on
the assumption that the reconstruction is piecewise constant.
The integrated metric tensors in their signal-specialized met-
ric distinguish between constant and linear signals but do not
differentiate between linear and higher-order signals. Given
that graphics hardware employs bilinear interpolation, their
metric could lead to over or undersampling, depending upon
the surface signal.

In this paper, we examine minimizing the signal approx-
imation error with the assumption that the reconstruction is
piecewise linear. Based on Taylor polynomial expansion of
signal error our metric consists of a weighted sum of squares
of second derivatives of the mapping h from the texture do-
main (s, t) to an n dimensional surface signal. These second
derivatives allow our metric to distinguish between linear
and higher order signals and thus provide greater sensitivity
to signal detail. This results in reduced signal approximation
error for a given texture size (see Fig. 7).

The specific contributions of this paper are:

• A novel error metric that integrates signal approximation
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error over the surface. It is derived using Taylor expansion
of signal error with the assumption that the reconstruction
is piecewise linear.

• A method to compute Hessians, second derivatives of the
mapping h between the texture domain and the surface
signal, using a least squares fitting method in order to
evaluate the terms of the metric. These terms are precom-
puted and integrated over each face.

• An affine transformation rule for efficient evaluation of
the metric during the parameterization process.

We implement an efficient algorithm that minimizes the sig-
nal error over the parameterization, while maintaining an
embedding. Our optimization algorithm incorporates a mul-
tiresolution hierarchy [SGSH02] to propagate metric infor-
mation from fine-to-coarse and creates the parameterization
in a coarse-to-fine manner. In Section 6 we compare the sig-
nal approximation error of texture maps created using our
metric with that of Sander et al., and show that our metric
achieves significant savings in texture area for a desired sig-
nal accuracy.

2. Previous Work

Signal Independent Parameterizations The problem of
minimizing distortion while flattening a surface chart into
2D has been studied in great detail since 1995 as noted in
the survey by Floater and Hormann [FH04].

Pinkall and Polthier first introduce the notion of using
cotangent weights as a discrete measurement of Dirichlet
energy with the aim of computing minimal surfaces [PP93].
Eck et al. propose the use of Dirichlet energy minimization
to parameterizing a mesh using harmonic maps [EDD∗95].
The texture coordinates for boundary vertices, however,
must be fixed a priori and harmonic maps may contain face
flips (adjacent faces in texture space with opposite orien-
tation) which violate the bijectivity of a parameterization.
Duchamp et al. investigate multiresolution methods for com-
puting harmonic maps [DCDA97]. Based on earlier work
by Tutte [Tut60], Floater [Flo97] proposes a different set of
weights for the edge spring model that guarantees an embed-
ding if the texture coordinates of the boundary are fixed to
a convex polygon. Desbrun et al. define a space of measures
spanned by a discrete version of the Dirichlet energy, and a
discrete authalic energy [DMA02].

Hormann and Greiner propose the MIPS parameterization
[HG00], which maximizes the conformality of the piecewise
linear mapping without demanding the mesh boundary to
be mapped onto a fixed shape. Another approach to mini-
mize angular distortion is proposed by Sheffer and de Sturler
[SdS01]. They define a non-linear energy in terms of the cor-
ner angles of the mesh in texture space. Levy et al. formu-
late the discrete conformality problem as a quadratic mini-
mization problem and prove the uniqueness and existence of
its solution [LPRM02]. Using standard numerical conjugate

gradient solver they are able to compute least squares ap-
proximations to continuous conformal maps very efficiently
without requiring fixed boundary texture coordinates.

There are some methods to compute parameterizations
over a non-planar domain. Haker et al. compute confor-
mal maps from a spherical domain onto a three dimen-
sional surface [HAT∗00]. Lee et al. use mesh simplification
to parameterize a surface over a base mesh [LSS∗98]. Kho-
dakovsky et al. employ a similar approach but with emphasis
on globally smooth derivatives [KLS03]. Praun et al. intro-
duce a robust technique for directly parametrizing a genus-
zero surface onto a spherical domain employing minimiza-
tion of a stretch-based measure, to reduce scale-distortion
and thereby prevent undersampling [PH03]. Gu and Yau
solve directly for global "flow fields" over a mesh of arbi-
trary genus, that can be "integrated" to obtain paramterized
charts [GY03].

Few approaches explicitly optimize global area or global
length distortion. Maillot et al. minimize an edge length
distortion, but cannot guarantee the absence of face flips
[MYV93]. They also propose an area preserving energy and
combine both energies in a convex combination. Levy and
Mallet use a metric that combines orthogonality and isopara-
metric terms [LM98]. Sander et al. minimize the average or
maximum singular value of the Jacobian to prevent under-
sampling of the surface [SSGH01]. To optimize for a uni-
form sampling, Sorkine et al. minimize the maximum of the
maximum singular value and the inverse of the minimal sin-
gular value, which penalizes both under- and oversampling
[SCOGL02].

Signal-specialized parameterizations Until recently,
there has been little emphasis on exploiting knowledge of
the surface signal in optimizing the parameterization.

Given an existing parameterization, Sloan et al. warp the
texture domain onto itself to more evenly distribute a scalar
importance field [SWB98]. Unlike importance, our metric
is derived directly from signal approximation error, and is
integrated over the surface. Terzopoulos and Vasilescu ap-
proximate a 2D image using a warped grid of sample values
[TV91]. The warping is achieved using a dynamic simula-
tion where grid edge weights are set according to local image
content. We consider signals mapped onto surfaces in 3D,
define the parameterization on a coarser, irregular mesh, and
store the signal in a texture image mapped onto this mesh.

Sander et al. build a signal-specialized parameterization in
a mutigrid hierarchy and minimize the signal approximation
error, the error between the original surface signal and its re-
construction from the sampled texture with the assumption
that the reconstruction is piecewise constant [SGSH02]. In
contrast, our metric is derived assuming that our reconstruc-
tion method is piecewise linear. This more closely matches
texture reconstruction hardware which does bilinear inter-
polation. This also holds true if the parameterization is used
for remeshing since the output remesh is typically made up
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of triangles which linearly interpolate the vertices. In Sec-
tion 6 we demonstrate significant improvement in the quality
of texture maps obtained for a desired level of signal accu-
racy over a variety of different models.

Balmelli et al. create space-efficient texture maps by dis-
tributing frequency content uniformly across an image using
a wavelet packet decomposition technique and denoising fil-
ter [BBT02]. The frequency map captures the relative impor-
tance of different regions in the image, and causes the image
to be stretched in high frequency areas, and contracted in low
frequency areas. There are two main differences between our
approach and that adopted by Balmelli et al. First, our met-
ric is derived specifically to reduce reconstruction errors. It is
able to differentiate directional differences in the variability
of the signal, and it agrees with optimality results from ap-
proximation theory. Second, given some signal over a mesh,
our method simply solves for a parametrization of the mesh,
and then samples and stores that signal as a single texture.
In contrast, Balmelli et al. begin with the signal represented
as an input texture and with associated texture coordinates.
They warp the image in order to more efficiently use the tex-
ture space and subsequently update the texture coordinates
to account for the warping. However, since the warping is
performed on a different grid than the triangulation of the
mesh, this necessarily creates some slipping of the texture
over the surface.

3. Signals over Meshes

Let the surface signal be denoted by the function g : S → Q,
where the signal-space Q can be vector-valued (e.g. RGB
color is a 3-vector in Q).
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Figure 1: We examine the mapping h = g◦ f .

There are a number of ways a surface signal may be de-
fined over the mesh. For example, a signal may result from
the evaluation of a procedural texture computation. In this
context, we wish to parameterize S and sample this signal

over the domain D. One also may begin with a signal de-
fined by a high-resolution image-texture and a given map-
ping onto S. In this case we may wish to parameterize S, and
resample the original signal at some lower resolution.

One can also define a signal over a low resolution mesh S,
using a high resolution mesh of the same model. If attributes
(e.g. RGB color, or normals) are specified at each vertex of
this high resolution mesh, linear interpolation then defines
a signal at each point on the high resolution mesh. Normal
shooting [SGG∗00] can then be used to create a correspon-
dance between S and the high resolution mesh, thus defining
a signal over S. All of our examples are of this type.

Normal shooting involves interpolating surface normals
of the face on which a subvertex lies on the low resolution
mesh S, and shooting rays in the direction of these inter-
polated normals to the high resolution mesh. During ray-
shooting, a ray may fail to hit the high resolution model, in
which case we use the nearest high resolution mesh vertex
to the subvertex to estimate its signal.

4. Signal-Specialized Parameterization Metric

4.1. Metric Derivation

To find the surface parameterization f , we examine how well
the function h = g ◦ f (from the texture domain D to the
signal-space Q) is approximated when reconstructed from a
discrete sampling over D (see Fig. 1).

In this section we derive a metric for signal approxima-
tion error, Eh(s, t), defined as the difference between h and
its reconstruction ĥ from a discrete sampling with spacing δ
in D with the assumptions: (1) ĥ is a piecewise linear recon-
struction, and (2) the sampling is asymptotically dense.

We assume that the domain D contains a regular grid of
sample points (si, t j), spaced 2δ apart on each axis as illus-
trated in Fig. 2. Let (ŝ, t̂)∈ [−δ,+δ]× [−δ,+δ] be a local co-
ordinate system within the grid square 2i j about each sam-
ple, such that (s, t) = (si + ŝ, t j + t̂) ∈2i j. Given that texture
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Figure 2: A regular grid of sample points in the texture do-
main.

mapping in hardware employs bilinear interpolation, a po-
tential reconstruction function ĥ in the neighborhood 2i j of
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each sample is given by a function with a constant and lin-

ear term in it: ĥi j(s, t) = h(si, t j)+[hs(si, t j),ht(si, t j)]

[

ŝ
t̂

]

.

With this reconstruction function the pointwise squared error
can be expressed as:

Ei j(s, t) = ||h(s, t)− ĥi j(s, t)||
2

=

∣

∣

∣

∣

h(si + ŝ, t j + t̂)−h(si, t j)− [hs(si, t j) ht(si, t j)]

[

ŝ
t̂

]∣

∣

∣

∣

2

Using a Taylor expansion about (si, t j), this can be written
as

Ei j(s, t) = Êi j(ŝ, t̂)+O(δ5)

where the error term from the squared Taylor expansion
gives rise to terms of order O(δ5), which are insignificant
compared to the first term of order δ4 as δ → 0. The first
term, corresponding to the third term of the Taylor expan-
sion, is defined via

Êi j(ŝ, t̂) =
1
4

(

[

ŝ t̂
]

[

hss(si, t j) hst(si, t j)
hst(si, t j) htt(si, t j)

][

ŝ
t̂

])2

To find the sum of squared error over all components of a
vector function, we obtain

Êi j(ŝ, t̂) =
1
4

n

∑
k=1

(

[

ŝ t̂
]

[

hk
ss(si, t j) hk

st(si, t j)

hk
st(si, t j) hk

tt(si, t j)

][

ŝ
t̂

])2

=
1
4
(α(si, t j)ŝ

4 +4β(si, t j)ŝ
3t̂ +(4τ(si, t j)+2χ(si, t j))ŝ

2t̂2

+4ε(si, t j)ŝt̂
3 +φ(si, t j)ŝ

4)

where n is the dimensionality of the signal function h (for
instance n = 3 for RGB color), and hk is the k-th component
of h, and





α(si, t j) β(si, t j) χ(si, t j)
β(si, t j) τ(si, t j) ε(si, t j)
χ(si, t j) ε(si, t j) φ(si, t j)





=
n

∑
k=1





hk
ss(si, t j)

hk
st(si, t j)

hk
tt(si, t j)



 [hk
ss(si, t j) hk

st(si, t j) hk
tt(si, t j)]

≡ H(s, t)

We can integrate Êi j(ŝ, t̂) over 2 = [−δ,+δ]× [−δ,+δ] to
obtain

Ẽi j(2) ≈
Âi j

4
δ4

(

α
5

+
(4τ+2χ)

9
+

φ
5

)

where Âi j is the 3D surface area corresponding to this grid
square. Odd powers of ŝ or t̂ vanish after integration with
symmetric limits i.e., [−δ, +δ]. The total error over all grid
cells is

Ẽδ(S) = ∑
i j

Âi j

4
δ4

(

α
5

+
(4τ+2χ)

9
+

φ
5

)

and its limit as δ → 0 is given by

lim
δ→0

(Ẽδ(S))

= lim
δ→0

1
4 δ4 s

(s,t)∈S

(

α(s,t)
5 +

(4τ(s,t)+2χ(s,t))
9 +

φ(s,t)
5

)

dA(s, t)

where dA(s, t) is the differential surface area. Evidently the
error converges to 0 at a rate of O(δ4). Therefore, a measure
of asymptotic approximation error with piecewise linear re-
construction over the entire surface S is to find the rate of
convergence,

R̃(S) ≡ lim
δ→0

(
Ẽδ(S)

δ4 )

=
1
4

x

(s,t)∈S

(

α(s, t)
5

+
(4τ(s, t)+2χ(s, t))

9
+

φ(s, t)
5

)

dA(s, t)

This can be expressed as:

R̃(S) =
1
4

welsum(H̃(S))

where

H̃(S) =





α̃ β̃ χ̃
β̃ τ̃ ε̃
χ̃ ε̃ φ̃



 =
x

(s,t)∈S

H(s, t)dÂ(s, t)

is the integrated H of the signal function h, and welsum
(weighted element sum) is defined via

welsum









α̃ β̃ χ̃
β̃ τ̃ ε̃
χ̃ ε̃ φ̃







 =
1
5

α̃+
2
9

χ̃+
4
9

τ̃+
1
5

φ̃

Reducing this integral to a sum over domain triangles, T , we
obtain

H̃(S) = ∑
i∈T

H̃(4i)

where

H̃(4i) =
x

(s,t)∈4i

H(s, t)dÂ(s, t)

With very similar analysis it is possible to derive a mea-
sure for bilinear reconstruction. For the sake of simplicity,
we chose to implement the metric for piecewise-linear re-
construction.

4.2. Properties of our Metric

The approximation theory/finite element literature provides
various asymptotic results on optimal triangulations of the
plane. In particular, suppose one wishes to approximate
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some bivariate scalar function g(x,y) using linear interpo-
lation with a given number of triangles over the (x,y) plane.
If approximation error is measured in the L2 sense then, ac-
cording to Nadler, as the number of triangles goes to infinity,
an optimal triangle’s orientation is given by the eigenvectors
of the Hessian of g and its aspect ratio by

∣

∣

∣

∣

λmax

λmin

∣

∣

∣

∣

1
2

where λmax and λmin are eigenvalues of the Hessian of the
approximation function [Nad86]. It has also been shown that
a mesh best approximates a smooth surface if the anisotropy
of the mesh follows (in non-hyperbolic regions) the eigen-
values and eigenvectors of the curvature tensor of the smooth
surface regions [Sim94].

θ
s

t

w

θ
s

t

w

θ
s

t

w

Figure 3: A rectangle R of width w rotated by θ.

It can be shown that, at least locally, our metric agrees
with Nadler’s result. Assume that our surface S is the unit
square on the x,y plane, and that the signal is some quadratic
function g(x,y) = Ax2 + By2 + F for which |A| > |B|. This
considers quadratics in normal form; a general quadratic can
always be reduced to normal form by a translation and rota-
tion of the x,y domain. It is easy to see that 2A and 2B are
eigenvalues of the Hessian of g

[

2A 0
0 2B

]

In this case, Nadler’s result implies that the optimal sampling
on a uniform grid will be axis aligned and have aspect ratio
of

∣

∣

∣

∣

A
B

∣

∣

∣

∣

1
2

Now, assume that we parameterize S over the (s, t) tex-
ture domain, using a single affine map from S to a rectangle
R of width w, height 1

w , and orientation θ (see Fig. 3). Over
these two degrees of freedom, (w,θ), we minimized our def-
inition of signal error in closed form and verified that the
following are indeed local minima as predicted by [Nad86]:

θ an integer multiple of π
2 , and w = |B

A |
1
4 . Thus our metric

also obtains the optimal orientation (axis-aligned) and opti-

mal aspect ratio (w/h = w2 = |B
A |

1
2 ).

Nadler further identifies a one degree of freedom fam-
ily of optimal solutions for the case in which the Hessian

has a negative eigenvalue (i.e, the surface is locally hyper-
bolic) [Nad86]. It remains for future work to show that this
entire family minimizes our metric, and that our metric ad-
mits no minima outside Nadler’s set.

4.3. Affine Transformation Rule for H̃

During optimization, we need to repeatedly modify the pa-
rameterizations of mesh vertices and compute the resulting
change in the signal error. Recomputing H̃ matrices based
on the modified parameterization is undesirable since this
involves expensive numerical integration as well as recom-
puting second derivatives of h.

Since modification of the parameterization is simply an
affine transformation of each mesh triangle, we can exactly
compute H̃ of a transformed triangle from its original H
without having to do the computation explicitly.

Let e : D → D : (s′, t′) → (s, t) be a local affine transform
from the new triangle parameterization to the old, resulting
in the new map h′ = h ◦ e. Let J(s, t) be the Jacobian of the
mapping e

J(s, t) =

[

∂e1
∂s

∂e1
∂t

∂e2
∂s

∂e2
∂t

]

=

[

p(s, t) q(s, t)
r(s, t) s(s, t)

]

where e1 denotes the first coordinate of e and e2 the second
and where the coordinates (s,t) now parameterize the domain
of e and thus h′. Thus the transformed second derivatives of
a scalar function h′ are given by

[

h′ss h′st
h′st h′tt

]

= JT
[

hss hst

hst htt

]

J

=

[

p(s, t) r(s, t)
q(s, t) s(s, t)

][

hss hst

hst htt

][

p(s, t) q(s, t)
r(s, t) s(s, t)

]

Expressing this as a linear system in the untransformed sec-
ond derivatives:




h′ss
h′st
h′tt



 =





p2 2pr r2

pq (ps+qr) rs
q2 2qs s2









hss

hst

htt



 = Q





hss

hst

htt





Thus H can be transformed via

Q





α β χ
β τ ε
χ ε φ



QT = Q





hi
ss

hi
st

hi
tt



 [hi
ss hi

st hi
tt ]Q

T

yielding H′ = QHQT . In the case of a vector function h,
we can absorb the sum over components inside the H term.
Integrating, we obtain:

H̃′(δi) =
x

(s,t)∈A

QHQT dÂ(s, t)

where Q is a function of the Jacobian as defined above, and
δi is the ith triangle over the surface. Since the Jacobian
is constant within each triangle δi, we can factor out
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the multiplication by Q in the above integral yielding a
transformation rule for H̃(S)

H̃′(S) = QH̃(S)QT

Therefore

R̃′(S) =
1
4

welsum(H̃′(S))

4.4. Numerical Computation of H̃

We described how to apply the affine transformation rule on
the H̃ matrices to quickly evaluate the signal error metric.
However, in order to use the affine transformation rule dur-
ing the parameterization process, we need to have initial H̃
matrices stored on the original mesh faces.

At the outset, we do not have a parameterization of the
original mesh that we could use to compute the initial H̃ ma-
trices. Thus, for each face, we create a canonical parameter-
ization based on a local isometric flattening of that face and
its three neighboring faces. As described below, we will also
need to sample these neighboring faces in order to accurately
compute the H̃ matrices.

During the optimization process, the affine transformation
rule is used to transform the H̃ matrices from their canonical
parametrization to the current parameterization that is being
evaluated. In this section we describe how to pre-compute H̃
matrices on the original mesh faces with respect to canonical
face parameterizations.

We assume that a continuous signal (e.g. normal map as
shown in Fig. 4) exists over the surface. Our method of com-
puting H̃(4i), is based on a numerical integration approach.
Specifically we apply a number of regular 1-to-4 subdivi-
sions to a face and obtain subfaces and subvertices. We com-
pute H at all the subfaces, sum all of these up, and multiply
by the geometric area of the face, in order to obtain H̃(4i).
The level of subdivision depends on the detail of the mesh.
For all examples in this paper, we subdivided each face into
64 subfaces (3 subdivisions) to compute H.

su rf a c e  m e sh  c h a rt

(1 3 1 6  v e rtic e s)

n o rm a l-f ie ld  sig n a l

(R G B = n x ,n y ,n z )

sh a d e d  su rf a c e

Figure 4: Our input consists of surface mesh and an asso-
ciated surface signal. Here the input is a single chart of the
fandisk mesh where the normal (nx,ny,nz) is the signal.

To compute H at a subface, we sample the signal at some
number of neighboring subvertices. In our examples, we se-
lected the 15 closest subvertices after the 3 regular 1-to-
4 subdivisions. We then estimate the second derivatives of
the mapping h by finding the best fitting quadratic signal to
these samples (the coefficients A, B, C, D, E and F of the
quadratic f = As2 + Bt2 +Cst + Ds + Et + F). We then use
the second derivatives of this quadratic approximation.

It is possible for our signals to vary linearly within two ad-
jacent mesh faces but have dramatically different derivatives
across the shared edge. Unless the subvertices used to com-
pute the second derivatives of h over a face include subver-
tices from adjacent faces, the second derivatives estimated
by our Least Squares solver along the boundary of the face
will be inaccurate. This could lead to high signal approxi-
mation error. In order to prevent this problem, as described
above, we also include subvertices from the three neighbor-
ing faces using the face’s local isometric parameterization.
During numerical integration, when selecting the 15 closest
subvertices, we also allow these subvertices to come from
these neighboring faces.

5. Chart parameterization algorithm

The goal of the optimization procedure is to minimize signal
error over the parameterizations of the mesh vertices, while
maintaining an embedding. Our optimization algorithm is
based on that of Sander et al. [SSGH01]. For completeness
we summarize this algorithm.

After obtaining an initial parameterization, we minimize
the signal error by repeatedly perturbing each vertex within
the kernel of the polygon formed by its neighboring vertices.
To improve the speed and result of the optimizations we
adopt the multiresolution optimization scheme adapted by
Sander et al. [SGSH02]. We use a multiresolution progres-
sive mesh [Hop96] sequence to propagate H̃ fine-to-coarse
(FTC) from the original mesh to all coarser meshes and ap-
ply a coarse-to-fine (CTF) parameterization algorithm that
uses these H̃s. During FTC we redistribute the H̃ according
to Sander et al.’s scheme of redistributing integrated metric
tensors (IMTs) [SGSH02]. We use a CTF optimization with
the geometric stretch metric [SSGH01] to obtain an initial
parameterization in order to transform the H̃s on the finest
level mesh, and thus bootstrap the iterative optimization pro-
cess.

This parameterization algorithm allows chart boundary ver-
tices to move in the texture domain at all levels of the CTF
optimization algorithm. Our error metric is not scale invari-
ant, and thus the signal error could go to zero as the chart be-
comes infinitely large. We achieve scale-invariance by mul-
tiplying signal error by the square of the total chart area.

The high-level algorithm can be summarized as:
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function OptimizeChartParameterization
Pre-compute canonical H̃s on fine mesh faces
Construct progressive mesh of chart
//Create an initial parameterization
Do CTF using geometric-stretch.
//Iteratively optimize using error metric:
for n iterations

Transform fine mesh H̃s using current param.
FTC propagate H̃s to all PM meshes.
CTF optimize signal error using H̃s.

6. Results

We have created signal-specialized parameterizations for
several models and compared them both quantitatively and
qualitatively against the signal-specialized parameterization
metric of Sander et al. The comparisons are shown in Fig. 7-
Fig 11. All models originated from 3D scanning. The signals
on the parasaur, fandisk, and cat are per-vertex normals on a
high resolution mesh, mapped to a low resolution mesh us-
ing normal-shooting. The signal on the face in Fig. 11 is de-
fined using per vertex color data on a high resolution mesh,
mapped to a low resolution mesh using normal-shooting. For
the fandisk model in Fig. 9 we manually partitioned the mesh
into 4 charts. Table 1 shows a comparison between the run-
ning time of our metric with that of Sander et al. on several
models. Our parameterization scheme takes a few minutes to
run per model.

To quantify parameterization quality, we measure signal
approximation error (SAE) as rms difference on a dense set
of surface points, distributed uniformly according to surface
area. For each point we compute the difference between the
original signal and the bilinear interpolation of the four ad-
jacent texture samples. For vector-valued signals we use the
L2 norm.

In Fig. 5- 6 we compare the reduction in SAE by our met-
ric with that of Sander et al. We refer to the former as sig-
nal error with piecewise linear reconstruction, and the latter
as signal error with piecewise constant reconstruction. The
graphs show the signal error as a function of the number of
texture samples for two parameterizations.

To prevent the formation of degenerate triangles when the
signal is locally constant on a region of the surface, Sander

Table 1: A comparison of running time in seconds.

Model #Vertices #Charts Sander et al. Ours

Figure 8 Parasaurhead 3,800 1 50 100

Figure 11 Face 5,000 1 120 200

Figure 10 Cat 1,000 1 10 25

Figure 9 Fandisk 6,475 4 170 210
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Figure 5: Comparison of signal approximation error (SAE)
as a function of texture size for two parameterizations of the
parasaur’s head model (3,870-vertex mesh).
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Figure 6: Comparison of signal approximation error (SAE)
as a function of texture size for two parameterizations of the
fandisk model (6,475-vertex mesh).

et al. add a tiny fraction of geometric stretch to their energy
functional[SGSH02]. For our metric we find it necessary to
do this as well on models such as the fandisk. Empirical anal-
ysis shows that the fraction of geometric stretch can have
a significant impact in reducing the SAE of the parameter-
ization. Furthermore, it seems that the amount of geomet-
ric stretch needed is dependent upon the scale of the error
functional and varies from model to model. Therefore, in or-
der to ensure fairness in our experimental comparisons in
Fig. 6, we only add sufficient geometric stretch to allow the
parameterization algorithm to converge to an optimal solu-
tion for both metrics. Empirical analysis also shows that for
each model there is some value of the fraction of geomet-
ric stretch that produces a parameterization with the lowest
SAE. For experiments with the models in Fig. 10-Fig. 11
we compare parameterizations created by our metric and the
metric by Sander et al. combined with their optimal geomet-
ric stretch value that is predetermined experimentally.

Both graphs in Fig. 5- 6 show a significant reduction in er-
ror from the signal error with piecewise constant reconstruc-

c© The Eurographics Association 2004.
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tion to the signal error with piecewise linear reconstruction.
In particular Fig. 5 shows that using our metric, a given sig-
nal approximation error can be obtained with up to a factor
of 4 savings in texture size. Fig. 7 illustrates the parame-
terizations of the two metrics for the parasaur model used in
Fig. 5 for specific texture resolutions. Fig. 6 compares the re-
sults of the two metrics on the fandisk model and also shows
savings in texture size for a given level of signal approxima-
tion error. The textures and texture mapped fandisk corre-
sponding to a texture resolution of 128x128 are illustrated in
Fig. 9. Fig. 10 and 11 are additional examples that illustrate
the difference between our metric and that of Sander et al.

Te x tu re  2 5 6 x 2 5 6 ; S A E = 5.5 Te x tu r e  1 2 8 x 1 2 8 ; S A E = 5.2

S ig n a l E r r o r  - P ie c e w is e  
C o n s ta n t R e c o n s tr u c tio n

S ig n a l E r r o r  - P ie c e w is e  
L in e a r  R e c o n s tr u c tio n

Figure 7: Our parameterization algorithm can reduce tex-
ture size by more than a factor of 4.

7. Summary and future work

Motivated by the need to reduce the size of texture maps
used in real-time rendering systems, we introduced a param-
eterization metric that is derived from a Taylor expansion
of signal approximation error. Unlike former methods, ours
assumes piecewise linear reconstruction and is thus a good
approximation to bilinear reconstruction employed in graph-
ics hardware. In order to empirically evaluate our metric, we
have implemented a multiresolution parameterization algo-
rithm that minimizes the signal error defined by our metric.

Our signal-specialized parameterization metric allocates
more texture samples to mesh regions with greater signal
variation. In particular, the integrated H̃ term in our met-
ric allows it to distinguish between linear and higher order
signals and allocate more texels to the latter than the former.
As shown in Fig. 5- 6, a factor of 4 of savings in texture
space is possible using our signal-specialized parameteriza-
tion method.

There are several areas of related work that could be ex-
plored in the future. Our metric does not place any restriction
on the dimensionality of the signal. It is possible to special-
ize a parameterization to a combination of signals, such as
normals and colors. Another area for future work is to ex-
plore perceptual measures in addition to signal approxima-
tion error and propagate these measures through the render-
ing process.

References

[BBT02] BALMELLI L., BERNARDINI F., TAUBIN G.:
Space-optimized texture maps. Computer
Graphics Forum (Eurographics) 21, 3 (2002),
411–420. 3

[COM98] COHEN J., OLANO M., MANOCHA D.:
Appearance-preserving simplification. In SIG-
GRAPH (1998), pp. 115–122. 1

[DCDA97] DUCHAMP T., CERTAIN A., DEROSE
T., AND W.: Hierarchical Computation of PL
harmonic Embeddings. Tech. rep., University
of Washington., 1997. 2

[DMA02] DESBRUN M., MEYER M., ALLIEZ P.: In-
trinsic parameterizations of surface meshes.
Computer Graphics Forum (Eurographics) 21,
3 (2002), 209–218. 2

[EDD∗95] ECK M., DEROSE T., DUCHAMP T., HOPPE

H., LOUNSBERY M., STUETZLE W.: Mul-
tiresolution analysis of arbitrary meshes. In
SIGGRAPH (1995), pp. 173–182. 2

[FH04] FLOATER M. S., HORMANN K.: Surface pa-
rameterization: a tutorial and survey. In Ad-
vances on Multiresolution in Geometric Mod-
elling, Dodgson N., Floater M. S.„ Sabin M.,
(Eds.). Springer-Verlag, Heidelberg, Heidel-
berg, Denmark, 2004. 2

[Flo97] FLOATER M. S.: Parametrization and smooth
approximation of surface triangulations. Com-
puter Aided Geometric Design 14, 4 (1997),
231–250. 2

[GY03] GU X., YAU S.-T.: Global conformal surface
parameterization. In 1st Symposium on Geom-
etry Processing (2003), pp. 127–137. 2

[HAT∗00] HAKER S., ANGENENT S., TANNENBAUM

A., KIKINIS R., SAPIRO G., HALLE M.:
Conformal surface parameterization for tex-
ture mapping. In IEEE TVCG (2000), vol. 6,
pp. 181–189. 2

[HG00] HORMANN K., GREINER G.: MIPS: An effi-
cient global parametrization method. In Curve
and Surface Design: Saint-Malo 1999, Lau-
rent P.-J., Sablonnière P.„ Schumaker L. L.,
(Eds.). Vanderbilt University Press, Nashville,
TN, 2000, pp. 153–162. 2

[Hop96] HOPPE H.: Progressive meshes. In SIG-
GRAPH (1996), pp. 99–108. 6

[KLS03] KHODAKOVSKY A., LITKE N., SCHRODER

P.: Globally smooth parameterizations with
low distortion. In SIGGRAPH (2003),
pp. 350–357. 2

c© The Eurographics Association 2004.



Tewari et al. / Signal-Specialized Parameterization for Piecewise Linear Reconstruction

SA E : 1 7 .6 SA E : 1 1 .56 4 x 6 4 6 4 x 6 4

Sa n d e r  e t a l. O u r s

Figure 8: Texture mapped parasaur’s head with 3,870 vertices.

12 8 x 12 8 12 8 x 12 8

S a n d e r  e t a l.

S A E : 2 .9

O u r s

S A E : 5 .3

Figure 9: Texture mapped fandisk with 6,475 vertices. A "Voronoi dilation" is performed on each texture image to fill in the
empty regions between the charts, and thus reduce artifacts along chart boundaries on the texture mapped model.

[LM98] LEVY B., MALLET J.-L.: Non-distorted tex-
ture mapping for sheared triangulated meshes.
In SIGGRAPH (1998), pp. 343–352. 2

[LPRM02] LEVY B., PETITJEAN S., RAY N., MAILLOT

J.: Least squares conformal maps for auto-
matic texture atlas generation. In SIGGRAPH
(2002), pp. 362–371. 2

[LSS∗98] LEE A. W., SWELDENS W., SCHRODER P.,
COWSAR L., DOBKIN D.: Maps: Multires-
olution adaptive parameterization of surfaces.
In SIGGRAPH (1998), pp. 95–104. 2

[MYV93] MAILLOT J., YAHIA H., VERROUST A.: In-
teractive texture mapping. In SIGGRAPH
(1993), pp. 27–34. 2

[Nad86] NADLER E.: Piecewise linear best l2 approx-
imation on triangulations. In Approximation

Thoery V, et al. C. K. C., (Ed.). Academic
Press, 1986, pp. 499–502. 5

[PH03] PRAUN E., HOPPE H.: Spherical parameteri-
zation and remeshing. In SIGGRAPH (2003),
pp. 340–349. 2

[PP93] PINKALL U., POLTHIER K.: Computing dis-
crete minimal surfaces and their conjugates.
Experiment. Math. 2, 1 (1993), 15–36. 2

[SCOGL02] SORKINE O., COHEN-OR D., GOLDENTHAL

R., LISCHINSKI D.: Bounded-distortion
piecewise mesh parameterization. In IEEE Vi-
sualization (2002). 2

[SdS01] SHEFFER A., DE STURLER E.: Parameteri-
zation of faceted surfaces for meshing using
angle-based flattening. Engineering and Com-
puters 17, 3 (2001), 326–337. 2

c© The Eurographics Association 2004.



Tewari et al. / Signal-Specialized Parameterization for Piecewise Linear Reconstruction

SA E : 1 0 .7 SA E : 9 .1

6 4 x 6 4

Sa n d e r  e t a l. O u r s

6 4 x 6 4

Figure 10: Texture mapped cat model with 1,000 vertices.

Sa n d e r  e t a l. O u r s

1 2 8 x 1 2 8

SA E : 5 .1 SA E : 4 .2

1 2 8 x 1 2 8

Figure 11: Texture mapped face with 5,000 vertices.

[SGG∗00] SANDER P. V., GU X., GORTLER S. J.,
HOPPE H., SNYDER J.: Silhouette clipping.
In SIGGRAPH (2000), pp. 327–334. 3

[SGSH02] SANDER P., GORTLER S., SNYDER J.,
HOPPE H.: Signal-specialized paramateriza-
tion. In Eurographics Workshop on Rendering
(2002), pp. 409–416. 1, 2, 6, 7

[Sim94] SIMPSON R. B.: Anisotropic mesh transfor-
mations and optimal error control. Appl. Num.
Math 14, 1-3 (1994), 183–198. 5

[SSGH01] SANDER P., SNYDER J., GORTLER S.,
HOPPE H.: Texture mapping progressive
meshes. In SIGGRAPH (2001), pp. 409–416.
2, 6

[SWB98] SLOAN P.-P., WEINSTEIN D., BREDERSON.

J.: Importance driven texture coordinate op-
timization. Computer Graphics Forum (Euro-
graphics) 17, 3 (1998), 97–104. 2

[Tut60] TUTTE W. T.: Convex representations of
graphs. London Math. Soc. 10 (1960), 204–
320. 2

[TV91] TERZOPOULOS D., VASILESCU M.: Sam-
pling and reconstruction with adaptive meshes.
CVPR (1991), 70–75. 2

c© The Eurographics Association 2004.


